首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physical properties of active turbulent benthic boundary layers (TBBL) generated by basin scale internal waves were studied within a Northern hemisphere thermally stratified lake. A microstructure profiler was used to measure the nature of the turbulence within the TBBLs while a series of thermistor chains were used to monitor the thermal structure of the lake. It was observed that a wind-driven anticlockwise diurnal-period vertical mode one Kelvin wave generated large scale motions within the water column, and that the interactions between this wave and the sloping lakebed induced TBBLs. A simple model, based on potential energy change and boundary shearing, was shown to describe the mean TBBL thickness.  相似文献   

2.
An expository review is given on various theories of modeling weakly to strongly nonlinear, dispersive, time-evolving, three-dimensional gravity-capillary waves on a layer of water. It is based on a new model that allows the nonlinear and dispersive effects to operate to the same full extent as in the Euler equations. Its relationships with some existing models are discussed. Various interesting phenomena will be illustrated with applications of these models and with an exposition on the salient features of nonlinear waves in wave-wave interactions and the related processes of transport of mass and energy.  相似文献   

3.
This paper presents the results of an investigation concerning the development of a turbulent boundary layer over a 2D symmetrical aerofoil and a 3D axisymmetric body with rigid and flexible surfaces. The experimental work included detailed measurements of the mean velocity profiles, pressure distribution, and drag force. The thin shear layer equations were solved numerically using a modified turbulence model to obtain the characteristics of the turbulent boundary layer. The results of this study indicate a significant difference between the characteristics of flow over rigid surfaces and those of flow over flexible surfaces of the same geometry. The mean velocity of flow in the case of flexible surfaces is smaller than the corresponding velocity of flow in the case of a rigid surface for a major part of the boundary layer. The boundary layer thicknesses are consistently higher on flexible surfaces than those on the corresponding rigid surfaces. Furthermore, in the case of flexible surfaces, drag reduction was always observed. The amount of reduction was seen to be systematically dependent on the characteristics of the flexible surface.  相似文献   

4.
An interactive zonal numerical method has been developed for the prediction of free surface flows around surface-piercing bodies, including both viscous and nonlinear wave effects. In this study, a Laplace solver for potential flow body-wave problems is used in conjunction with a Reynolds-averaged Navier-Stokes (RANS) method for accurate resolution of viscous, nonlinear free surface flows around a vertical strut and a series 60 ship hull. The Laplace equation for potential flow is solved in the far field to provide the nonlinear waves generated by the body. The RANS method is used in the near field to resolve the turbulent boundary layers, wakes, and nonlinear waves around the body. Both the kinematic and dynamic boundary conditions are satisfied on the exact free surface to ensure accurate resolution of the divergent and transverse waves. The viscous-inviscid interaction between the potential flow and viscous flow regions is captured through a direct matching of the velocity and pressure fields in an overlapping RANS and potential flow computational region. The numerical results demonstrate the capability of an interactive RANS∕Laplace coupling method for accurate and efficient resolution of the body boundary layer, the viscous wake, and the nonlinear waves induced by surface-piercing bodies.  相似文献   

5.
When an oscillatory water wave propagates over a soft poroelastic bed, a boundary layer exists within the porous bed and near the homogeneous water∕porous bed interface. Owing to the effect of the boundary layer, the conventional evaluation of the second kind of longitudinal wave inside the soft poroelastic bed by one parameter, ε1 = k0a, is very inaccurate so that a boundary layer correction approach for a soft poroelastic bed is proposed to solve the nonlinear water wave problem. Hence a perturbation expansion for the boundary layer correction approach based on two small parameters, ε1 and ε2 = k0∕k2, is proposed and then solved. The solutions carried out to the first three terms are valid for the first kind and the third kind of waves throughout the whole domain. The second kind of wave is solved systematically inside the boundary layer, whereas it disappears outside the boundary layer. The result is compared with the linear wave solution of Huang and Song in order to show the nonlinearity effect. The present study is very helpful to formulate a simplified boundary-value problem in numerical computation for soft poroelastic medium with irregular geometry.  相似文献   

6.
A new analytical expression for velocity profile in a fully developed turbulent boundary layer above a porous surface subject to flow injection is derived by solving the coupled Reynolds equations and turbulent kinetic energy equation. The advection of turbulent kinetic energy is considered during the derivation, whereas the earlier studies have neglected it. The new solution reduces to the universal logarithmic law in the case of no flow injection. For the small injection, the solution can be expanded into a series form in terms of the normalized injection velocity. The leading order terms are found to be equivalent to those in the earlier works in which the advection of turbulent kinetic energy has been neglected in the derivation. The new solution can provide more accurate prediction of bed shear stress for a wide range of flow injection rate, fluid type (e.g., from air to water), and surface roughness. On the other hand, the earlier theories may significantly underestimate bed shear stress under high injection rates.  相似文献   

7.
Bed stresses in the bottom boundary layer of the York River estuary, Va., were estimated from 3D near-bottom velocities measured by Acoustic Doppler Velocimeters (ADVs) and also by a profiling array of electromagnetic current meters. By assuming the measurements were made in a constant stress layer, four methods of stress estimation were evaluated using ADVs: (1) direct covariance (COV) measurement; (2) turbulent kinetic energy; (3) inertial dissipation utilizing the Kolmogorov spectrum; and (4) log profile. The four methods yielded similar estimates of frictional velocity U* based on ADV output from both 14 and 44 cm above bed. All eight estimates of average U* were consistent with the overall mean of 1.10 cm∕s to within the 95% confidence interval for individual burst estimates. The COV method worked slightly better nearer the bed, possibly because of the sensitivity of COV to the upper limit of the constant stress layer. The inertial dissipation method performed marginally well at 14 cm above bed, likely due to sediment induced stratification and insufficient separation of turbulent production and dissipation scales. The log profile method was the most variable and appeared most sensitive to stratification and to the thickness of the constant stress layer. The turbulent kinetic energy method was the most consistent at both heights and appears most promising for further development. Results encourage future use of the ADV in estuarine environments but also favor the simultaneous use of several methods to estimate bottom stress.  相似文献   

8.
This paper describes a numerical investigation on the generation of three-dimensional (3D) fully nonlinear water waves by a submerged object moving at speeds varied from subcritical to supercritical conditions in an unbounded fluid domain. Considering a semispheroid as the moving object, simulations of the time evolutions of 3D free-surface elevation and flow field are performed. The present 3D model results are found to agree reasonably well with other published vertical two-dimensional (2D) and quasi-3D numerical solutions using Boussinesq-type models. Different from the 2D cases with near critical moving speeds, the 3D long-term wave pattern suggests that in addition to the circularly expanded upstream advancing solitonlike waves, a sequence of divergent and transverse waves are also developed behind the moving object. The velocity distributions and associated fluid-particle trajectories at the free-surface and middle layers are presented to show the 3D feature of the motion. The results under various vertical positions (referred as gap) of a moving object are also compared. It is found the gap has shown a substantial influence on the generated waves, especially in the wake region, when an object moves at a near critical or subcritical speed. However, the results under the case with a high supercritical moving speed indicate the gap has a negligible effect on the generated upstream and downstream waves.  相似文献   

9.
The results of a series of laboratory modeling experiments are presented for the case of a vertical, turbulent, plane, negatively buoyant jet impinging on a horizontal solid surface placed a distance H below the jet source. The results show that the impingement results in the generation of a complex two-dimensional disturbance field at the site of the impact and the generation of a buoyancy-driven boundary current carrying away fluid from the impingement zone. The disturbance field is seen to extend vertically along the time-averaged axis of the incident buoyant jet, thereby distorting the vertical velocity and concentration fields over a vertical distance that depends upon the value of the parameter Fd0?4/3, where Fd0 is the source Froude number of the buoyant jet. Transverse velocity and concentration profiles taken at different axial distances from the source reveal systematic departures from the far-field Gaussian similarity profiles as the solid boundary is approached. Such departures are utilized to quantify and parameterize the vertical distance z??? from the boundary at z = 0 beyond which the impingement of the buoyant jet does not affect significantly the incident flow. Measurements indicate that z???/b ~ 0.4Fd04/3. For distances z相似文献   

10.
介绍不同雷诺数下海水绕流深海扬矿管的流动情况,分析管面形成层流及湍流边界层的分离过程,比较二者分离点的位置及压差阻力情况,分析绕流阻力和举力的形成过程、计算方法、影响因素及相应的减阻措施。  相似文献   

11.
A chimera Reynolds-averaged Navier-Stokes (RANS) method has been developed for time-domain simulation of transient flow induced by a ship approaching a berthing facility. The method solves the mean flow and turbulence quantities on embedded, overlapped, or matched multiblock grids. The unsteady RANS equations were formulated in an earth-fixed reference frame and transformed into general curvilinear, moving coordinate systems. A chimera domain decomposition techniques has been employed to accommodate the relative motions between different grid blocks. Calculations have been performed for a full-scale motor vessel in berthing operations. Comparisons have been made between the computations and measurements to demonstrate the feasibility of the chimera RANS approach for time-domain simulation of the hydrodynamic coupling between the ship and berthing structures. The numerical solutions successfully captured many important features of the transient flow around a berthing ship, including the underkeel flow acceleration, wake flow separation, and water cushioning effects between the ship and harbor quay wall.  相似文献   

12.
A Lagrangian, nonhydrostatic, Boussinesq model for weakly nonlinear and weakly dispersive flow is presented. The model is an extension of the hydrostatic model—dynamic river model. The model uses a second-order, staggered grid, predictor-corrector scheme with a fractional step method for the computation of the nonhydrostatic pressure. Numerical results for solitary waves and undular bores are compared with Korteweg-de Vries analytical solutions and published numerical, laboratory, and theoretical results. The model reproduced well known features of solitary waves, such as wave speed, wave height, balance between nonlinear steepening and wave dispersion, nonlinear interactions, and phase shifting when waves interact. It is shown that the Lagrangian moving grid is dynamically adaptive in that it ensures a compression of the grid size under the wave to provide higher resolution in this region. Also the model successfully reproduced a train of undular waves (short waves) from a long wave such that the predicted amplitude of the leading wave in the train agreed well with published numerical and experimental results. For prismatic channels, the method has no numerical diffusion and it is demonstrated that a simple second-order scheme suffices to provide an efficient and economical solution for predicting nonhydrostatic shallow water flows.  相似文献   

13.
Since porous material is usually of a finite thickness in nature, the effects of periodically nonlinear water waves propagating over a soft poroelastic bed with finite thickness are hence noticed and studied in this work. The water waves are simulated by potential theory while the porous bed is governed by Biot’s theory of poroelasticity herein. The conventional Stokes expansion of water waves based on a one-parameter perturbation expansion fails to solve the soft poroelastic bed problem; therefore, the boundary layer correction approach combined with a two-parameter perturbation expansion is proposed, which enables us to solve the problem of soft poroelastic bed with finite thickness. The results are compared to the similar problem with an infinite-thickness porous bed. The boundary effects of the impervious rock are significant on wave-induced pore water pressure and effective stresses, but are of very little significance on wave profiles at the free surface and the porous bed surface. However, the rigid boundary is insignificant to the pore water pressure and effective stresses when the thickness of porous bed is larger than about one wavelength.  相似文献   

14.
Vertical profiles of turbulent streamwise velocities in gravel bed rivers are investigated. Field measurements made at high and low flows with electronic pitot tubes show logarithmic velocity profiles to extend over much of the flow depth. For the gravel bed rivers studied the velocity at 0.6 of the total depth was generally a good indicator of depth-averaged flow velocity. An unambiguous definition of flow depth is adopted to deal with situations where the bed is uneven or moving. When hydraulic roughness Z0 is defined as a fitted parameter of a logarithmic velocity profile, the river data indicate that the profile origin displacement below the tops of roughness elements scales with Z0. No direct relation between Z0 and bed material size is evident under mobile bed conditions. For these conditions a relation between hydraulic roughness and U*2 is identified (with U* also derived as a log profile parameter). A flow resistance equation using this relation is verified by comparison with mobile bed laboratory measurements in which U* is not fitted from velocity profiles.  相似文献   

15.
16.
This study considers the 3D runup of long waves on a uniform beach of constant or variable downward slope that is connected to an open ocean of uniform depth. An inviscid linear long-wave theory is applied to obtain the fundamental solution for a uniform train of sinusoidal waves obliquely incident upon a uniform beach of variable downward slope without wave breaking. For waves at nearly grazing incidence, runup is significant only for the waves in a set of eigenmodes being trapped within the beach at resonance with the exterior ocean waves. Fourier synthesis is employed to analyze a solitary wave and a train of cnoidal waves obliquely incident upon a sloping beach, with the nonlinear and dispersive effects neglected at this stage. Comparison is made between the present theory and the ray theory to ascertain a criterion of validity. The wave-induced longshore current is evaluated by finding the Stokes drift of the fluid particles carried by the momentum of the waves obliquely incident upon a sloping beach. Currents of significant velocities are produced by waves at incidence angels about 45° and by grazing waves trapped on the beach. Also explored are the effects of the variable downward slope and curvature of a uniform beach on 3D runup and reflection of long waves.  相似文献   

17.
The problem of the dynamic interaction of water waves, current, and a hard poroelastic bed is dealt with in this study. Finite-depth homogeneous water with harmonic linear water waves passing over a semi-infinite poroelastic bed is investigated. In order to reveal the importance of viscous effect for different bed forms, viscosity of water is considered herein. In a boundary layer correction approach, the governing equations of the poroelastic material are decoupled without losing physical generality. The contribution of pressure effect and shear effect to the hard poroelastic bed, which is a valuable indication to the mechanism of ripple formation, is clarified in the present study. This approach will be helpful in saving time and storage capacity when it is applied to numerical computation.  相似文献   

18.
A new instrument built to directly measure the bottom shear stress under different conditions of periodic waves is presented. Similar to classical Taylor’s cylindrical viscosimeter, the instrument is formed by two concentric cylinders, and the space between them is filled with water. The internal cylinder is fixed whereas the external cylinder, with a specific roughness, rotates following a given unsteady velocity time history. The shear stress at the outer cylinder wall is measured by using a torque meter. Both monochromatic and sawtooth-shaped waves have been tested, and the experimental shear stress time histories were compared with the results obtained from a numerical model.  相似文献   

19.
红透山坑口是一个开采50多年的老矿山,地质资源在不断的减少,合理回收采场矿石底柱,增加回收矿石量,使之稳产高产已经是一个迫在眉睫的问题,提出实施人工假底,为合理回收采场矿石底柱,加大矿石回收量,为安全生产提供科学的保证。  相似文献   

20.
The flow past two-dimensional (2D) channel cavities along with the removal of neutrally buoyant or dense miscible contaminants introduced instantaneously inside the cavity are studied using eddy resolving techniques. In the simulations, the incoming boundary layer is laminar and the flow is observed not to transition to turbulence as it is convected over the cavity. As for these flow conditions the main coherent structures in the separated shear layer over the cavity are quasi-dimensional, 2D simulations are performed. It is found that the mechanism of removal of the contaminant is very different between the neutrally buoyant and buoyant cases. In the neutrally buoyant case the contaminant is purged from the cavity mostly due to the interactions between the vortices shed in the separated shear layer with the main recirculation eddies inside the cavity and with the trailing edge corner. In the simulations in which a dense contaminant is introduced inside the cavity, after the initial stages of the mass exchange process, the main phenomenon is the presence of a large amplitude internal wave motion which interacts with a strong cavity vortex situated near the trailing edge corner in between the shear layer and the density interface. The density variation across this oscillatory interface is strong. Through this interaction wisps of denser contaminant are extracted from the region beneath the density interface, before being ejected from the cavity by the separated shear layer vortices. The values of the global mass exchange coefficients for the different phases of the purging process are estimated from simple dead-zone models. As expected, the purging process is delayed in the case in which the density of the contaminant is larger than the one of the carrying fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号