首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The major goal of optical packet switching (OPS) is to match switching technology to the huge capacities provided by (D)WDM. We study optical packet switches with recirculating fiber delay line (FDL) buffers. Through simulation, we have assessed the logical performance of a single optical packet router (OPR), focusing on packet loss rate (PLR). By verifying that our scheduling algorithm does not alter the traffic profile characteristics from in- to output, we illustrate how the single node results can be used to assess network-wide performance. We use the capability of assessing end-to-end PLRs to develop network-wide routing algorithms designed to minimize the maximal PLR occurring in the network. In case studies on pan-European networks, we first compare two algorithm variants and thereafter we compare the PLR-based routing algorithm with both load balancing and shortest path routing. While load balancing achieves PLRs that are multiple orders of magnitude lower than shortest path routing, the PLR-based algorithm can reach PLRs up to two orders of magnitude better. The improvement in PLR comes at the price of only a small increase in used bandwidth (a few percent). Subsequently we show that the discussed PLR-based routing algorithm can be easily extended to multiple priorities. By introducing multiple priorities we can keep the loss rates for high priority traffic very low. However, it may lead to an increase of the obtained minimal max-PLR value for low priority traffic. But as we prove this increase to be limited, the cost of introducing multiple priorities is small.  相似文献   

2.
任意拓扑结构战术地域分组交换网的性能分析   总被引:1,自引:0,他引:1  
郝川  李英涛 《通信学报》1997,18(1):22-26
本文以战术地域分组交换网为基础建立具有不规则拓扑结构网络模型,在给出网络的拓扑结构、网络用户业务量和路由选择算法的条件下,提出了一种计算网络链路传输业务量的方法,并用于分析网络的传输性能。同时,还用计算机仿真方法对同一网络进行模拟。分析结果说明:这类通信网的路由选择算法的设计应更重视网络内部流量的均匀分配  相似文献   

3.
余翔  易明敏  杨路 《电信科学》2016,32(11):10-15
面对当前网络中流量的增长、业务种类的增多,SDN中多数的路由算法只支持一种QoS参数,没有兼顾对系统调度服务公平性的考虑,然而多参数限制的QoS 明显是NP 难问题,该问题用普通的路由算法难以解决,引进蚁群算法,在蚁群算法的基础上,将链路的时延、分组丢失率引入蚁群算法中,作为算法选择路径的依据,提出一种新的路由算法。该算法在对不同业务属性的数据流分类的基础上,根据网络的实时状况,为不同业务属性的数据流选择合适的路径,对网络中的数据流进行多路径传输。仿真实验表明,该算法能有效地降低数据流的时延、分组丢失率。  相似文献   

4.
This paper shows how to optimize the routing decisions in a nondeterministic routing algorithm called convergence routing in which routes may change depending on the traffic conditions. The routing algorithm guarantees a loss-free delivery of data packets from bursty sources, and a deterministic bound on the route length in arbitrary topology networks. The routing decisions are based on assigning routing priorities to the links such that a packet is forwarded to the highest priority link which is not blocked. Routing priorities are assigned using a local-greedy metric which minimizes the distance (number of hops) to the destination. This work shows that routing decisions using a local-greedy metric are not optimal, and the performance of the algorithm can be improved substantially by using new measures. Thus, various look-ahead metrics which take into account the potential gain on the other switching nodes toward the destination of a packet are suggested. The contributions of this work are: (1) a new analytical model to capture the behavior of a switching node; (2) an iterative optimization technique to set routing priorities according to various look-ahead measures; and (3) heuristics to ensure the stability of the routing priorities. The optimization objective is to maximize the throughput by minimizing the maximum total flow carried on a link in the network under static traffic model. The performance is studied computationally on various networks and traffic matrices. It is shown that up to a 50% performance increase can be obtained by optimizing the routing priorities  相似文献   

5.
This paper focuses on the routing overhead analysis in ad hoc networks. Available work in this research field considered the infinite buffer scenario, so that buffer overflow will never occur. Obviously, in realistic ad hoc networks, the node buffer size is strictly bounded, which leads to unavoidable packet loss. Once a packet is dropped by a relay node, the bandwidth consumption for the previous transmission is actually wasted. We define the extra wasted bandwidth as the packet loss (PL) overhead. A theoretical analysis framework based on G/G/1/K queuing model is provided, to estimate the PL overhead for any specific routing protocols. Then, with this framework, we propose a distributed routing algorithm termed as novel load-balancing cognitive routing (NLBCR). The OPNET network simulator is further conducted to compare the performance among the NLBCR, AODV and CRP. The results indicate that NLBCR can reduce routing overhead to a considerable extent, as well as improve the network throughput and decrease the end-to-end delay.  相似文献   

6.
Among the various availability criteria for computer communication networks, based on strictly topological considerations or taking into account also the traffic characteristics, we propose, as a network performance measure, the probability that an assigned fraction of the stability throughput can be carried out with average packet and message time delays not greater than specified values.At the aim, an algorithm for the availability analysis has been developed; given the topological and physical characteristics of the network, the external traffic statistics at the network node pairs and the routing procedure, the network availability and the average loss of throughput due to single failures of lines or switching nodes are evaluated with regard, as an example, to a simple five node network.  相似文献   

7.
Typically, bandwidth reservation is not made for data applications. Therefore, the only way to provide minimum bandwidth guarantees to such an application is by using a fairness mechanism to regulate the access to the network and by controlling the packet loss (i.e., congestion) inside the network. There are numerous works treating fairness in ring networks, however, there are almost no such works on fairness in arbitrary topology networks. The context of this work is fairness in an arbitrary topology network, the MetaNet, which employs convergence routing, a loss-free routing technique which is a variant on deflection routing. We note that minimum bandwidth guarantee combined with loss-free routing are the desired quality-of-service (QoS) attributes for most data applications. While developing the mechanisms, we also present performance measures to assess the new access- and flow-control algorithm: i) locality and congestion-driven-only the subnetwork containing conflicting traffic streams becomes involved in the fairness regulation. Furthermore, the fairness regulation is activated only when congestion occurs. This implies that when there is no congestion, nodes can access the network immediately and freely, which is a key requirement for distributed computing. ii) Scalability-the data-structure sizes used in the algorithm are a function of the switching node degree, and use constant space control signals of two bits only (the ATM standard, for example, dedicates four bits in the header of each cell to generic flow-control). iii) Linear access time in the congested subnetwork-measured by “the maximal clique in what we call the conflict graph to which a node belongs,” and a frequency which is inverse linear in this parameter (when the traffic pattern stabilizes)  相似文献   

8.
In nowadays, wavelength-division multiplexing (WDM) networks, on the one hand, increasingly more users expect the network to provide high-priority QoS services demanding no congestion and low latency. On the other hand, it is significantly more difficult for network operators to forecast future traffic demands, as the packet traffic running over WDM networks fluctuates over time for a variety of reasons. Confronted with a rough understanding of traffic patterns as well as the increasing number of time-sensitive applications, most networks today are grossly over-provisioned. Thus, designing cost-effective WDM networks in an uncertain traffic environment, which includes network planning and robust routing, is both an important and a challenging task. In this paper, we explore adaptive load-balancing to investigate the problems of network planning and robust routing for WDM mesh networks under varying traffic matrices. We first propose an efficient heuristic algorithm called Maximizing Network Capability (MNC) to provision congestion-free and cost-effective WDM networks based on load-balancing to deal with traffic uncertainty. Then, a novel traffic grooming algorithm called Adding Direct Traffic (ADT) is proposed to implement robust routing with partial traffic information. Finally, we demonstrate by simulation that MNC consumes less resources than previous methods and performs quite close to the optimal solution, while ADT achieves the desirable performance in delay, jitter (delay variation), and throughput compared with existing robust routing and traffic grooming algorithms.  相似文献   

9.
In this paper, we present a throughput-maximizing routing metric, referred to as expected forwarding time (EFT), for IEEE 802.11s-based wireless mesh networks. Our study reveals that most of the existing routing metrics select the paths with minimum aggregate transmission time of a packet. However, we show by analyses that, due to the shared nature of the wireless medium, other factors, such as transmission time of the contending nodes and their densities and loads, also affect the performance of routing metrics. We therefore first identify the factors that hinder the forwarding time of a packet. Furthermore, we add a new dimension to our metric by introducing traffic priority into our routing metric design, which, to the best of our knowledge, is completely unaddressed by existing studies. We also show how EFT can be incorporated into the hybrid wireless mesh protocol (HWMP), the path selection protocol used in the IEEE 802.11s draft standard. Finally, we study the performance of EFT through simulations under different network scenarios. Simulation results show that EFT outperforms other routing metrics in terms of average network throughput, end-to-end delay, and packet loss rate.  相似文献   

10.

The wireless sensor network based IoT applications mainly suffers from end to end delay, loss of packets during transmission, reduced lifetime of sensor nodes due to loss of energy. To address these challenges, we need to design an efficient routing protocol that not only improves the network performance but also enhances the Quality of Service. In this paper, we design an energy-efficient routing protocol for wireless sensor network based IoT application having unfairness in the network with high traffic load. The proposed protocol considers three-factor to select the optimal path, i.e., lifetime, reliability, and the traffic intensity at the next-hop node. Rigorous simulation has been performed using NS-2. Also, the performance of the proposed protocol is compared with other contemporary protocols. The results show that the proposed protocol performs better concerning energy saving, packet delivery ratio, end-to-end delay, and network lifetime compared to other protocols.

  相似文献   

11.
郭庆  郝男男 《通信技术》2003,(12):76-77
跳频分组无线网抗干扰性好,保密性强,广泛应用于战术通信系统。讨论了几种跳频分组无线网的路由选择算法,着重分析了针对传输多类型分组跳频网的ALR路由算法,并将此路由算法的性能与DAR算法的性能进行了比较,证实了该算法在吞吐量、端-端正确传输率等方面都优于传统的方法。  相似文献   

12.
This work describes a distributed algorithm inspired by ant colony optimisation for a solution to the problem of dynamic routing and wavelength assignment with wavelength continuity constraint in optical burst switched networks. The evaluation was conducted in a wavelength division multiplexed network environment with limited number of wavelength channels and in a flexible spectrum network environment undergoing transmission impairments. The simulations in the flexible spectrum network environment aim to replicate the effects of both linear and nonlinear physical layer impairments. Under these effects, an optical burst control packet could be lost during traversal of the network with no measure in place to notify the network of the loss or to free up optical resource reservations. The optical burst switching acknowledgement protocol has been modified in this work to account for a burst control packet failure by implementing a traversal acknowledgement to cater for its loss. The performance of the distributed ant-based algorithm has been extensively evaluated on several network topologies and compared with that obtained by shortest path routing and ant colony routing and wavelength assignment. The results show that the distributed ant-based algorithm significantly improves the burst transmission success probability in the wavelength division multiplexed network environment and provides a good solution in the flexible spectrum network environment undergoing transmission impairments.  相似文献   

13.
In this paper, we study the issue of routing in a vehicular ad hoc network with the assistance of sparsely deployed auxiliary relay nodes at some road intersections in a city. In such a network, vehicles keep moving, and relay nodes are static. The purpose of introducing auxiliary relay nodes is to reduce the end‐to‐end packet delivery delay. We propose a sparsely deployed relay node assisted routing (SRR) algorithm, which differs from existing routing protocols on how routing decisions are made at road intersections where static relay nodes are available such that relay nodes can temporarily buffer a data packet if the packet is expected to meet a vehicle leading to a better route with high probability in certain time than the current vehicles. We further calculate the joint probability for such a case to happen on the basis of the local vehicle traffic distribution and also the turning probability at an intersection. The detailed procedure of the protocol is presented. The SRR protocol is easy to implement and requires little extra routing information. Simulation results show that SRR can achieve high performance in terms of end‐to‐end packet delivery latency and delivery ratio when compared with existing protocols. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In optical burst-switched networks, one of the most significant issues is contention resolution. There have been several deflection routing techniques as contention resolution. While contention is resolved by traditional deflection routing, it cannot guarantee that the control packet will reserve all the wavelengths successfully to the destination on the alternate path, especially when traffic load in a network is high. Therefore, in this paper, we propose a Deflection Routing with Virtual Wavelength Assignment (DR-VWA) algorithm in order to provide a higher resource guarantee for loss-sensitive traffic bursts. The proposed DR-VWA scheme (1) dynamically decides the alternate path with the least traffic load and (2) allows high-priority bursts in terms of loss to be assigned available wavelengths over the path virtually. The proposed scheme is evaluated through simulation, and it is shown that significant improvement with regard to burst loss and wavelength conversion cost can be achieved.This work was supported in part by the Korea Science and Engineering Foundation (KOSEF) through OIRC project and by the US National Communications System (NCS).  相似文献   

15.
Routing protocol of MANET works with the presumption that nodes will transmit the data in collaboration. This presumption is a limitation of routing protocol which gives an occasion to attackers to hinder the security of the device and data in the network. Therefore, it becomes vital to develop methods and systems which will ensure the safety, integrity and confidentiality of data in such devices and systems. Although, existing IDS are able to detect various types of attack but some misbehavior goes undetected which potentially damage the network. Collusion attack is one such misbehavior where nodes perform maliciously in collaboration with neighboring nodes without being detected. In this work, Intrusion detection algorithm has been proposed that can effectively detect and isolate colluding nodes from the network so that these malicious nodes do not affect the performance of the network . Proposed detection algorithm uses in–out traffic information and overhearing statistics of nodes to identify colluding attackers. Detection algorithm works successfully for DSR routing protocol. Experimental results on NS-2 show that the proposed algorithm is capable of reducing the packet drops consequently improving the throughput of the network in presence of collusion attack.  相似文献   

16.
The dynamic nature of mobile nodes of ad hoc network is mostly affected by security problems which reduce data forwarding rate in multimedia sources. Due to the rapid growth of wireless applications, the different multitalented routing protocols are proposed in recent years. But the recent protocols are not efficient for multimedia applications, till now, specific security aware routing protocols are not proposed for multimedia data transfers. In this paper, we proposed trust enhanced cluster based multipath routing (TECM) algorithm. We use energy efficient PSO algorithm used to create cluster formation and cluster head, super cluster head are selected from trust values, which compute form proposed TECM algorithm. The multi trust factors are used for trust computation, such as frame/packet loss ratio, frame/packet forward energy, frame/packet receiving energy, routing overhead, received signal strength, frame/packet forward rate, average forward delay and protocol deviation flag. We then combine proposed TECM algorithm with standard multipath OLSR protocol (TECM-OLSR) to analyze the performance of proposed algorithm. The simulated results show that proposed TECM-OLSR protocol is very effective in terms of loss and delivery rate, delay, routing overhead and network lifetime compare to FPNT-OLSR.  相似文献   

17.

Extensive use of sensor and actuator networks in many real-life applications introduced several new performance metrics at the node and network level. Since wireless sensor nodes have significant battery constraints, therefore, energy efficiency, as well as network lifetime, are among the most significant performance metrics to measure the effectiveness of given network architecture. This work investigates the performance of an event-based data delivery model using a multipath routing scheme for a wireless sensor network with multiple sink nodes. This routing algorithm follows a sink initiated route discovery process with the location information of the source nodes already known to the sink nodes. It also considers communication link costs before making decisions for packet forwarding. Carried out simulation compares the network performance of a wireless sensor network with a single sink, dual sink, and multi sink networking approaches. Based on a series of simulation experiments, the lifetime aware multipath routing approach is found appropriate for increasing the lifetime of sensor nodes significantly when compared to other similar routing schemes. However, energy-efficient packet forwarding is a major concern of this work; other network performance metrics like delay, average packet latency, and packet delivery ratio are also taken into the account.

  相似文献   

18.
Lee  S.-J. Gerla  M. Toh  C.-K. 《IEEE network》1999,13(4):48-54
Bandwidth and power constraints are the main concerns in current wireless networks because multihop ad hoc mobile wireless networks rely on each node in the network to act as a router and packet forwarder. This dependency places bandwidth, power, and computation demands on mobile hosts which must be taken into account when choosing the best routing protocol. In previous years, protocols that build routes based on demand have been proposed. The major goal of on-demand routing protocols is to minimize control traffic overhead. We perform a simulation and performance study on some routing protocols for ad hoc networks. The distributed Bellman-Ford (1957, 1962), a traditional table-driven routing algorithm, is simulated to evaluate its performance in multihop wireless network. In addition, two on-demand routing protocols (dynamic source routing and associativity-based routing) with distinctive route selection algorithms are simulated in a common environment to quantitatively measure and contrast their performance. The final selection of an appropriate protocol will depend on a variety of factors, which are discussed in this article  相似文献   

19.
A mobile ad hoc network is an autonomous system of infrastructure-less, multihop, wireless mobile nodes. Reactive routing protocols perform well in this environment due to their ability to cope quickly against topological changes. This paper proposes a new routing protocol named CHAMP (caching and multiple path) routing protocol. CHAMP uses cooperative packet caching and shortest multipath routing to reduce packet loss due to frequent route failures. We show through extensive simulation results that these two techniques yield significant improvement in terms of packet delivery, end-to-end delay and routing overhead. We also show that existing protocol optimizations employed to reduce packet loss due to frequent route failures, namely local repair in AODV and packet salvaging in DSR, are not effective at high mobility rates and high network traffic.  相似文献   

20.
In IEEE 802.11 wireless networks, the residual capacity of the wireless links should be accurately estimated to realize advanced network services such as flow admission control or load balancing. In this paper, we propose an algorithm that estimates the packet delivery failure probability by collecting transmission statistics from nearby nodes, and by using a basic collision detection mechanism. This probability is then used in an analytical model to calculate the maximum allowable traffic needed to reach the saturation condition. We show by simulations that estimation error is within 0.5–5.0%, which is significantly lower than the best performance of prior estimation methods. We also demonstrate that the flow admission control is successfully achieved in a realistic wireless network scenario by the help of accurate link residual bandwidth estimation, where the unsatisfied traffic demand remain bounded at a negligibly low level. A routing algorithm that finds max–min residual bandwidth path between source and destination nodes is also implemented, and simulation results show that the network throughput achieved by this algorithm significantly exceeds that of other popular mesh routing protocols. Finally, we provide test results from the real implementation of our algorithm on 802.11 wireless equipment, which are consistent with the simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号