首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
委燕  王淑莹  马斌  彭永臻 《化工学报》2014,65(10):4145-4149
为了研究缺氧条件下游离亚硝酸(FNA)对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的选择性抑菌效应,通过批次试验考察活性污泥经缺氧FNA(0.27 mg HNO2--N·L-1)处理6 h后,其氨氧化速率与亚硝酸盐氧化速率的变化及AOB和NOB活性恢复情况。结果表明:经缺氧FNA处理的活性污泥,NOB活性下降83.57%,而AOB的活性仅下降22.34%。此污泥在正常条件下运行34个周期后,NOB的活性仍未得到恢复,且硝化过程中亚硝酸盐积累率逐渐增加,最后稳定在90%以上。典型周期内氮化合物浓度变化研究表明,即使在过曝气2 h的条件下,亚硝酸盐积累并未遭到破坏。上述试验结果表明基于缺氧FNA选择性抑菌效应有望稳定实现城市污水短程硝化,为城市污水短程硝化厌氧氨氧化提供基础。  相似文献   

2.
以14 L序批式活性污泥反应器(SBR)处理含盐生活污水,控制曝气体积流量60 L/h、时间300 min,考察不同盐度(NaCl)SBR内微生物活性变化,并确定反应器脱氮及N_2O释放特性。结果表明,盐度对各菌群抑制程度亚硝态氮氧化菌(NOB)氨氧化菌(AOB)碳氧化菌。盐度10 g/L,AOB和NOB受抑制程度较低,而N_2O还原受明显抑制,N_2O产率由盐度0时的5.14%增至10 g/L时的7.96%。盐度增至20 g/L,AOB和NOB均受到明显抑制,系统内亚硝化率达90%以上。系统淘洗出NOB,由全程硝化转变为短程硝化过程。NO_2~--N大量积累和AOB相对含量增加,为低含氧条件下AOB的好氧反硝化提供了条件,高盐度对氧化亚氮还原酶活性抑制也导致了系统N_2O释放量增加。  相似文献   

3.
基于FNA处理污泥实现城市污水部分短程硝化   总被引:5,自引:1,他引:4       下载免费PDF全文
马斌  委燕  王淑莹  陈娅  彭永臻 《化工学报》2015,66(12):5054-5059
为实现城市污水短程硝化厌氧氨氧化生物脱氮,以去除有机物的实际污水为研究对象,考察了游离亚硝酸盐(FNA)处理污泥实现城市污水部分短程硝化的可行性。 结果表明,FNA处理活性污泥后,亚硝酸盐氧化菌(NOB)的亚硝酸盐氧化速率下降程度大于氨氧化菌(AOB)的氨氧化速率,且在0~0.75 mg HNO2-N·L-1范围内随着FNA浓度的增加抑制作用增强。接种实际污水厂活性污泥后,系统亚硝酸盐(NO2--N)积累率仅为1%,即为全程硝化。在控制污泥龄约为15 d的条件下,采用FNA处理污泥可使系统亚硝酸盐积累率增加至90%以上。水力停留时间调至2.5 h时,实现了部分短程硝化,且出水NO2--N/NH4+-N平均值为1.24,可满足厌氧氨氧化脱氮反应的要求。因此采用FNA处理污泥,结合水力停留时间和污泥龄控制可实现城市污水部分短程硝化。  相似文献   

4.
短程生物脱氮过程菌群调控影响因素研究进展   总被引:1,自引:0,他引:1  
短程生物脱氮技术可有效降低污水处理成本。本文介绍了温度、pH、溶解氧(DO)、游离氨(FA)、游离亚硝酸(FNA)等环境因素对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)的不同影响;特异性硝化抑制剂:丙烯基硫脲(ATU)、氯酸盐、叠氮化钠(NaN3)等对短程硝化的抑制效应。这些研究有助于更好地调控硝化菌群的类型,实现更稳定的短程生物脱氮。  相似文献   

5.
为建立城市污水主流厌氧氨氧化脱氮系统并研究其温室气体N2O排放特征,采用低氧SBBR处理模拟生活污水并获得了94.1%的TN去除率。连续试验及批量试验结果表明,高效脱氮是部分硝化-短程反硝化耦合厌氧氨氧化共同耦合作用结果。典型周期内N2O排放呈快速上升、波动式快速下降、缓慢消失的规律,其中第75 min N2O排放速率最高,达6.7μg/(L·min),推测是由于低氧硝化过程中羟胺氧化作用所致。高通量测序揭示了体系内同时存在着厌氧氨氧化、好氧异养、反硝化、硝化等功能菌属,与系统脱氮和N2O产生密切相关。  相似文献   

6.
利用紫外线A(UVA,波长315~400 nm,最高365 nm)辅助照射活性污泥,研究了紫外辅助实现城市污水短程硝化工艺的可行性,考察了UVA对活性污泥中氨氧化菌(AOB)和亚硝酸氧化菌(NOB)活性影响。结果表明,不同辐射强度UVA照射下AOB活性略有提高而NOB活性显著下降,辐射强度1.67×10-6 Einstein/(L·s)下对NOB活性的抑制率达40%。通过序批式反应器(SBR),以模拟城市污水为处理对象,在UVA紫外辐射强度0.867×10-6 Einstein/(L·s)下,在常温(25~27℃)、COD为100~150 mg/L、进水NH4+-N的质量浓度为50 mg/L的条件下,运行30 d后出水NH4+-N去除率达到90%以上、NO2--N积累率稳定在80%左右,成功实现了城市污水短程硝化。  相似文献   

7.
曾薇  张洁  纪兆华  王安其  彭永臻 《化工学报》2016,67(6):2533-2541
采用连续流MUCT工艺处理实际生活污水,研究短程生物脱氮的实现,并采用实时荧光定量PCR方法(quantitative real time PCR,QPCR)分析全程脱氮向短程脱氮转变过程中氨氧化细菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)的动态变化。通过降低溶解氧浓度为0.5mg·L-1和缩短水力停留时间为6h,实现短程硝化,亚硝酸盐积累率达到90%。在短程硝化稳定运行阶段总氮去除率高达90%以上,远远大于全程阶段的74%。QPCR结果表明全程脱氮阶段水力停留时间的缩短使AOB细胞数呈现下降的趋势,NOB细胞总数稳定维持在108cells·(g dried sludge)-1。短程脱氮阶段,AOB细胞数小幅度上升,由3.17×106cells·(g dried sludge)-1增长到1.32×107cells·(g dried sludge)-1,同时AOB占全菌的比例也小幅度增长。NOB的细胞数在5.9×107~1.78×108cells·(g dried sludge)-1之间波动。NOB占全菌的比例由1.44%下降到0.47%。因此,MUCT工艺处理实际生活污水的系统中NOB丰度降低及活性抑制是实现并维持短程生物脱氮的重要原因。短程脱氮运行期间由于控制低溶解氧浓度和短的水力停留时间,AOB丰度及相对含量没有显著增加,甚至下降,但不会影响氨氮和总氮的去除。  相似文献   

8.
刘越  李鹏章  彭永臻 《化工学报》2015,66(11):4652-4660
N2O是3种主要的温室气体之一,污水的生物脱氮过程是N2O产生的一个主要人为来源。通过对不同条件下生活污水短程硝化过程中N2O的产生情况进行研究,考察了短程硝化过程中硝化速率(AOR)与N2O产生速率(N2OR)之间的关系。结果表明:随着DO水平的提高,AOR逐渐上升,N2OR则呈现先增加后减少的趋势;最大N2OR出现在DO为0.6 mg·L-1时,为1.29 mg N2O-N·(g MLVSS)-1·h-1。低DO水平下AOR的提高会引起N2OR的增加;但高DO水平下较高的AOR不一定产生较多的N2O。不同条件下,N2O的产生途径不同,引起N2OR的变化。在DO较低时,N2O的产生以NH2OH/NOH途径为主,AOR的提高会促进N2O产生;随着DO的增加,N2O的产生途径主要为AOB的有氧反硝化作用,此时较高的DO水平会对这一反应造成抑制,虽然反应过程中AOR较高,但N2OR处于较低水平。  相似文献   

9.
以异养颗粒污泥为接种污泥启动SBR反应器,通过协同调控进水碳、氮负荷比值,成功获得了具备短程亚硝化功能的自养型颗粒污泥。基于对粒径分布、胞外聚合物(EPS)和功能菌动力学活性的分析,系统阐述了影响污泥性状与功能演化的关键因素。结果表明,随着氨氧化菌(AOB)活性(μNO3-N)的持续增强和对亚硝酸盐氧化菌(NOB)活性(μNO3-N)的有效抑制,反应器对亚硝态氮(NO2--N)的累积速率可达1.34 kg·(m3·d)-1。污泥平均粒径由1.4 mm增至2.2 mm,颜色变为红棕色,沉降性能明显改善。得益于EPS的不断累积,颗粒污泥在高选择压条件下(沉淀时间3 min),仍能有效截留、固定AOB。曝气反应期间,游离氨(FA)和游离亚硝酸(FNA)对NOB的选择性抑制也是实现稳定亚硝化反应的重要原因。  相似文献   

10.
生活污水对成熟厌氧氨氧化颗粒污泥的影响   总被引:1,自引:0,他引:1  
部分短程硝化和厌氧氨氧化技术的研究主要集中在高氨氮废水方面,对低氨氮浓度生活污水的研究相对较少。使经过除碳和部分短程硝化后的实际生活污水进入厌氧氨氧化UASB反应器,探究生活污水对成熟厌氧氨氧化颗粒污泥的影响。结果表明,当厌氧氨氧化UASB反应器的进水由配水变为生活污水后,反应器出水中氨氮浓度可降到5 mg·L-1以下,亚硝态氮浓度可降到1 mg·L-1以下,但是硝态氮的生成量高于理论值,可能是溶解氧被带入UASB反应器使硝化作用增强。UASB反应器内厌氧氨氧化污泥颜色由红色变为红黑色,T-EPS含量减少,PN/PS由1.13增大到3.66,沉降性变好,反应器内污泥中厌氧氨氧化菌Candidatus Brocadia所占比例由17.7%减少为14.4%,系统内AOB和NOB菌的含量增加,如果能够降低进入UASB反应器的溶解氧,有可能会减少出水硝氮,达到较好总氮去除效果。  相似文献   

11.
12.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

13.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

14.
ESR and XPS are used to study the Mo-based catalysts MoO3/K2CO3/SiO2 and K2MoO4/SiO2 prepared with two kinds of precursors, (NH4)6Mo7O244H2O and K2MoO4. The catalytic properties of the catalysts for methanethiol synthesis from high H2S-containing syngas are explored. The activity assay shows that the two catalysts have much the same activity for the reaction. By the ESR characterization of both functioning catalysts, the resonant signals of oxo-Mo(V) (g=1.93), thio-Mo(V) (g=1.98) and S (g=2.01 or 2.04) can be detected. In the catalyst MoO3/SiO2 modified with K2CO3, as increasing amounts of K2CO3 are added, the content of oxo-Mo(V) increases, but thio-Mo(V) decreases. The XPS characterization indicates that Mo has mixed valence states of Mo4+, Mo5+ and Mo6+, and that S includes three kinds of species: S2– (161.5 eV), [S–S]2– (162.5 eV) and S6+ (168.5 eV). Adding K2CO3 promoter to the catalysts, the Mo species of high valence state is easily sulphided and reduced to Mo2S and oxo-M(V), and the derivation of [S–S]2– and S2– species from S is promoted simultaneously. The methanethiol synthesis is favored if the mole ratio of (Mo6+ + Mo5+)/Mo4+ 0.8 and S2–/[S–S]2– is kept at a value of about 1.  相似文献   

15.
An experimental strategy was developed to obtain transparent Si-Al-Ti-Ni-Mo and Si-Zr-Ti-Ni-Mo sols via the sol-gel process. The sol was prepared from Si(OEt)4 (TEOS), Al(OBus)3 (OBus: C2H5CH(CH3)O), Ti(OEt)4 (OEt: OCH2CH3), Zr(OPrn)4 (OPrn: OCH2CH2CH3). In both cases nickel nitrate hexahydrate (Ni(NO3)2 · 6H2O) and ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24 · 4H2O) were the Ni and Mo sources, respectively. The sols were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Assignments of the simultaneous formation of the Si-O-Al, Si-O-Ti, Si-O-Ni, and Si-O-Zr bonds were done. The sols were polymerized at room temperature (293 K) to obtain gels, and these were dried at 423 K and calcined at 573, 853 and 893 K in air. The characterization techniques used were small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR). The density of the solids was measured following ASTM method D-4892 and the porosity and surface area were determined by N2 adsorption/desorption isotherms. The corresponding average pore diameters were evaluated using the BJH, HK, and DA methods.  相似文献   

16.
Extensive homogeneous gasphase reactions were observed when decane was used as the hydrocarbon reductant for the selective reduction of NO x . The catalytic performance of a SnO2/CoO x /Al2O3 catalyst was found to be strongly dependent on the extent of the homogeneous reaction in the precatalytic volume. The effect of the homogeneous reaction on the catalytic performance also depended on whether SO2 was present in the feed. By filling the precatalytic volume with 25–35 mesh irregularly shaped quartz chips, gasphase reaction was suppressed significantly. This methodology was used to evaluate the inherent catalytic performance of SnO2/CoO x /Al2O3 and SnO2/Al2O3 catalysts with decane as a reductant. It was found that in the absence of SO2, SnO2/Al2O3 was a better catalyst than SnO2/CoO x /Al2O3, but in the presence of 30 ppm of SO2 the latter was a far better catalyst.  相似文献   

17.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

18.
Combustion characteristics of lignite-fired oxy-fuel flames   总被引:1,自引:0,他引:1  
This experimental work describes the combustion characteristics of lignite-fired oxy-fuel flames, in terms of temperature distribution, gas composition (O2, CO2, CO, total hydrocarbon concentration and NO) and ignition behaviour. The aim is to evaluate the flame structure of three oxy-fuel cases (obtained by changing the flue gas recycle rate) including a comparison with an air-fired reference case. Measurements were performed in Chalmers 100 kW test unit, which facilitates oxy-fuel combustion under flue gas recycling conditions. Temperature, O2 and CO concentration profiles and images of the flames indicate that earlier ignition and more intense combustion with higher peak temperatures follow from reduction of the recycle rate during oxy-fuel operation. This is mostly due to higher O2 concentration in the feed gas, reduced cooling from the recycled flue gas, and change in flow patterns between the cases. The air case and the oxy-fuel case with the highest recycle rate were most sensitive to changes in overall stoichiometry. Despite significant differences in local CO concentration between the cases, the stack concentrations of CO are comparable. Hence, limiting CO emissions from oxy-fuel combustion is not more challenging than during air-firing. The NO emission, as shown previously, was significantly reduced by flue gas recycling.  相似文献   

19.
An efficient process to remove organic sulfur compounds from model fuel has been explored. Dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) can be completely oxidized into their corresponding sulfones by H2O2 over 14 wt.% MoO3/γ-Al2O3 catalyst under mild conditions in 15 min. The effects of solvent, initial sulfide concentration, loading of MoO3 and amount of catalyst on oxidative removal of DBT were studied. The employments of solvents have decreased the reaction rate of DBT, which can be attributed to the competitive adsorption between the sulfide and solvent. The oxidative reactivity increases in the order of thiophene (Th) < benzothiophene (BT) < DBT < 4, 6-DMDBT. The catalyst can be regenerated by methanol washing at 333 K.  相似文献   

20.
The mixed metal oxides TiO2-Fe2O3 and ZrO2-Fe2O3 were examined as potential catalysts for the dehydrogenation reaction of ethylbenzene. The acidic and basic properties and surface area, pore volume and pore size distribution of these catalysts were measured. The catalytic activities can be correlated very well with the surface area and the acidity and basicity of ZrO2-Fe2O3 catalysts. However, for TiO2-Fe2O3 catalysts, the surface area, the amount of acidic and basic sites and TiFe2O5 crystallinity are all important factors affecting the catalytic activities for ethylbenzene dehydrogenation. A synergistic effect was found for the TiO2-Fe2O3 and ZrO2-Fe2O3 catalyst system and also for the TiO2-Fe2O3-ZrO2 system, i.e. the activities of these catalysts can be ranked in the following order: TiO2-Fe2O3-ZrO2>TiO2-Fe2O3 >ZrO2>Fe2O3>TiO2. Meanwhile, all of these catalysts showed higher activities than the conventional potassium-promoted iron catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号