首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed theoretical study of the electronic and transport properties of a single atom transistor, where a single phosphorus atom is embedded within a single crystal transistor architecture, is presented. Using a recently reported deterministic single‐atom transistor as a reference, the electronic structure of the device is represented atomistically with a tight‐binding model, and the channel modulation is simulated self‐consistently with a Thomas‐Fermi method. The multi‐scale modeling approach used allows confirmation of the charging energy of the one‐electron donor charge state and explains how the electrostatic environments of the device electrodes affects the donor confinement potential and hence extent in gate voltage of the two‐electron charge state. Importantly, whilst devices are relatively insensitive to dopant ordering in the highly doped leads, a ~1% variation of the charging energy is observed when a dopant is moved just one lattice spacing within the device. The multi‐scale modeling method presented here lays a strong foundation for the understanding of single‐atom device structures: essential for both classical and quantum information processing.  相似文献   

2.
Eshelby's method is used in this paper to evaluate approximately the energy released when a fiber, which is embedded in a stressed infinite matrix, is “cut” by the development of cracks in the matrix. The released energy can be considered as a measure of the toughness of a fiber against matrix cracks. As numerical examples, the energies released by breaking an embedded isotropic glass fiber and an embedded transversely isotropic carbon fiber are evaluated and the effects of the fiber geometry, material properties, as well as the stress field on the energies released are demonstrated.  相似文献   

3.
4.
材料损伤开裂的数值模拟方法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对数值模拟材料损伤开裂的现有方法——空单元技术和嵌入过程区中结点力释放方法,提出了释放空单元内结点力的新模拟方法,既可解决原有空单元技术未曾明确的残余应力的释放问题,又可避免采用嵌入过程区方法时所引入的大量重叠结点。己有算例表明,本方法具有模型简明,操作便利的特点。  相似文献   

5.
The behavior of the energy of molecular dynamics models of alkali metals constructed using the embedded atom potential at high temperatures is discussed. Pair potentials and embedding potentials for lithium, sodium, potassium, rubidium, and cesium are presented as uniform analytical expressions. If the parameters of the potential of the embedded atom model (EAM) are selected based on the known dependence of the density of liquid metal on temperature, then, as temperature approaches the critical one, the actual energy increases faster than the energy of the models in all cases. The thermal contribution of electron gas to the energy of metal is considered as the cause of the discrepancy. It is shown that it is possible to eliminate the discrepancy between energies of models and the actual metal at high temperatures, if the energy of thermal excitation of electrons is taken into consideration. The difference between the actual energy of metal and the energies of EAM for liquid Li, K, and Cs is almost equal to the contribution of the thermal energy of electrons. The thermal energy of electrons is taken into account in analysis of data obtained using shock compression.  相似文献   

6.
A new technique for sharp‐interface modeling of dendritic solidification is proposed using a meshfree interface finite element method such that the liquid–solid interface is represented implicitly and allowed to arbitrarily intersect the finite elements. At the interface‐embedded elements, meshfree interface points without connectivity are imposed directly at the zero level set while meshfree interpolants are constructed using radial basis functions. This ensures both the partition of unity and the Kronecker delta properties are satisfied allowing for precise and easy imposition of Dirichlet boundary conditions at the interface. The constructed meshfree interpolants are also used for solving a variational level set equation based on the Ginzburg–Landau energy functional minimization such that reinitialization is completely eliminated and fast marching algorithms for interfacial velocity extension are not necessary resulting in an efficient algorithm with excellent volume conservation. The meshfree interface finite element method is used for modeling dendritic solidification in a pure melt where it is found suitable in handling the complex interfacial dynamics often encountered in dendritic growth. Mathematical formulation and implementation followed by numerical results and analysis will be presented and discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A simple parameterization of embedded atom method is proposed and two adjustable parameters are introduced to describe the pairwise potential and electron density. The embedded energy functions are obtained for fcc metals Cu, Ag, Au, Ni, Pd and Pt through the Standard fitting procedure of embedded atom method. To test the validity of the obtained functions, the formation energy of various defects are calculated  相似文献   

8.
Abstract:Embedded and co-cured composite damping structure is a new damping processing structure, which can be widely used in high-tech fields such as aviation, aerospace, high-speed train, etc. Explicit dynamic analysis software LS-DYNA was used to simulate low velocity impact on embedded and co-cured composite damping structure panels. The simulation results are compared with the experimental data to illustrate the validity of modeling and calculation method. The result of simulation shows that the impact resistance of embedded and co-cured composite damping structure is much higher than composite structure without viscoelastic damping material.  相似文献   

9.
10.
嵌入式网络化变电所电能量管理系统   总被引:4,自引:0,他引:4       下载免费PDF全文
 电能量管理系统是变电所自动化系统的重要组成部分.提出并研究设计了嵌入式网络化电能量管理系统,
以高性能嵌入式处理器和嵌入式实时操作系统为核心进行系统设计. 系统通过以太网口或嵌入式MODEM ,基于
TCP/IP协议进行网络通信,具有高可靠性、高实时性的特点.详细论述了系统设计、硬件设计和软件设计,并给出
实际运行结果.  相似文献   

11.
微振动力学系统模型构造微分方程系数矩阵方法   总被引:3,自引:0,他引:3  
对于多自由度定常约束微振力学系统的数学建模有许多方法,但这些方法不是受到使用条件限制就是计算繁琐,并且不适合于计算机建模。根据系统的动能、势能、耗散能量与运动方程决定的动能、势能、耗散能量分别相等的原理,提出了构造微分方程系数矩阵方法(下称能量偏导法)。论证了直接法^[1]、视察法^[2,7]是能量偏导法的特例。能量偏导法的优点是;在建立运动方程的过程,没有对时间求异的过程,也没有对方程整理和化简的过程。该方法既适用于单自由度系数又适合于多自由度系统,既适用于手工建模又方便于计算机建模。在该方法的基础上,本文又提出了运动方程解耦的数学条件,为广义坐标的选取指明了方向。文中也给出了能量偏导法的应用和结论。  相似文献   

12.
The condensation and assembly of atomic fluxes incident upon the surface of a thin film during its growth by vapor deposition is complex. Mediating the growth process by varying the flux, adjusting the film temperature, irradiating the growth surface with energetic (assisting) particles or making selective use of surfactants is essential to achieve the level of atomic scale perfection needed for high performance films. A multiscale modeling method for analyzing the growth of vapor deposited thin films and nanoparticles has begun to emerge and is reviewed. Ab-initio methods such as density functional theory are used to provide key insights about the basic mechanisms of atomic assembly. Recent work has explored the transition paths and kinetics of atomic hopping on defective surfaces and is investigating the role of surfactants to control surface atom mobility. New forms of interatomic potentials based upon the embedded atom method, Tersoff and bond order potentials can now be combined with molecular dynamics to investigate many aspects of vapor phase synthesis processes. For example, the energy distribution of atoms emitted from sputtering targets, the effects of hot atom impacts upon the mechanisms of surface diffusion, and the role of assisting ions in controlling surface roughness can all be investigated by this approach. They also enable the many activation barriers present during atomic assembly to be efficiently evaluated and used as inputs in multipath kinetic Monte Carlo models or continuum models of film growth. This hierarchy of modeling techniques now allows many of the atomic assembly mechanisms to be incorporated in film growth simulations of increasing fidelity. We identify new opportunities, to extend this modeling approach to the growth of increasingly complicated material systems. Using the growth of metal multilayers that exhibit giant magnetoresistance as a case study, we show that the approach can also lead to the identification of novel growth processes that utilize adatom energy control, very low energy ion assistance, or highly mobile, low solubility chemical species (surfactants) to control surface diffusion controlled film growth. Such approaches appear capable of enabling the creation of multilayered materials with exceptionally smooth, unmixed interfaces, with significantly superior magnetoresistance.  相似文献   

13.
Additive Manufacturing (AM) is a game changing production technology for aerospace applications. Fused deposition modeling is one of the most widely used AM technologies and recently has gained much attention in the advancement of many products. This paper introduces an extensive review of fused deposition modeling and its application in the development of high performance unmanned aerial vehicles. The process methodology, materials, post processing, and properties of its products are discussed in details. Successful examples of using this technology for making functional, lightweight, and high endurance unmanned aerial vehicles are also highlighted. In addition, major opportunities, limitations, and outlook of fused deposition modeling are also explored. The paper shows that the emerge of fused deposition modeling as a robust technique for unmanned aerial vehicles represents a good opportunity to produce compact, strong, lightweight structures, and functional parts with embedded electronic.
  相似文献   

14.
First, a methodology for observation and modeling of microscopic damage evolution in quasi-isotropic composite laminates is presented. Based on the damage observation using both an optical microscope and a soft X-ray radiography, a damage mechanics analysis is conducted to formulate the stiffness change due to transverse cracking. Then, both energy and stress criteria are combined to provide a valid procedure to predict the transverse crack evolution. The theoretical prediction is found to agree well with the experimental results for the transverse crack density as a function of strain as well as stress–strain curves. Then, another methodology is introduced using two kinds of embedded optical fiber sensors to detect and monitor the transverse crack evolution in composite laminates. One is plastic optical fibers (POF), where the loss in optical power is generated by local deformation of POF due to transverse cracking. The other is fiber Bragg grating (FBG) sensors, where the local strain distribution within the FBG gage length due to transverse cracking alters the power spectrum of the light reflected from the FBG sensors. Embedded optical fiber sensors are found to be a powerful method to detect and monitor the transverse crack evolution in composite laminates.  相似文献   

15.
As a consequence of the increasing demands in automotive industry concerning crashworthiness and passive safety, the concern for energy management and safety demands also increases. The goal of energy management is to reduce the forces and stresses on an occupant or a pedestrian during a crash event; in some cases it may be possible to reduce the forces by a factor of two. This requires usage of new advanced materials in automotive components. Energy absorbing foams and other lightweight materials like plastics and polymer composites are increasingly used in automotive industry. Hence, extensive study of energy absorbing behavior of these materials as well as the automotive components is needed for further improvements in numerical modeling and crash simulations. The paper enlightens recent advances in investigation of mechanical properties and energy absorption ability of the mentioned lightweight materials as well as modeling with finite element codes for crash simulations.  相似文献   

16.
阐述了镶嵌纳米复合薄膜的发展、制备、评估及物件。这类薄膜含有镶嵌在介质薄膜中的纳米尺度的金属颗粒或半导体颗粒。作为基础研究,它们可用于研究量子点效应、电子-空穴限域效应、声子限域效应、巨磁阻及非线性光学性能等的研究;作为应用,它们已在光-热转换、恒温系数的电阻膜等获得应用,并将在电双稳开关、光开关及光电器件中获得应用。本文主要介绍了GaAs镶嵌薄膜,同时还介绍了巨磁阻镶嵌薄膜及电双稳薄膜等近年来的实验结果。  相似文献   

17.
The Dynamic Flowgraph Methodology (DFM) is a new approach for embedded system safety analysis. This methodology integrates the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan II Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, the dimensionality of the decision tables for software subroutines creates a problem. A possible solution for solving the software portion of the DFM model is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.  相似文献   

18.
The design, finite element modeling, fabrication, and characterization of a novel surface acoustic wave (SAW) delay line for bio/chemical and telecommunication applications in CMOS technology are introduced. A full modeling was carried out. The devices are designed in a standard semiconductor foundry 1.5-mum two-metal two-poly process. A unique maskless postprocessing sequence is designed and completed. The three postprocessing steps are fully compatible with any standard integrated circuit technology such as CMOS. This allows any signal control/processing circuitry to be easily integrated on the same chip. ZnO is used as the piezoelectric material for SAW generation. A thorough characterization and patterning optimization of the sputtered ZnO was carried out. The major novelties that are introduced in the SAW delay line features are the embedded heater elements for temperature control, compensation, and acoustic absorbers that are designed to eliminate edge reflections and minimize triple transit interference that is amplified by edge reflections. Both of these attributes are designed by using CMOS materials without disturbing SAW performance  相似文献   

19.
20.
With the emergence of the Internet of things (IoT), embedded systems have now changed its dimensionality and it is applied in various domains such as healthcare, home automation and mainly Industry 4.0. These Embedded IoT devices are mostly battery-driven. It has been analyzed that usage of Dynamic Random-Access Memory (DRAM) centered core memory is considered the most significant source of high energy utility in Embedded IoT devices. For achieving the low power consumption in these devices, Non-volatile memory (NVM) devices such as Parameter Random Access Memory (PRAM) and Spin-Transfer Torque Magnetic Random-Access Memory (STT-RAM) are becoming popular among main memory alternatives in embedded IoT devices because of their features such as high thickness, byte addressability, high scalability and low power intake. Additionally, Non-volatile Random-Access Memory (NVRAM) is widely adopted to save the data in the embedded IoT devices. NVM, flash memories have a limited lifetime, so it is mandatory to adopt intelligent optimization in managing the NVRAM-based embedded devices using an intelligent controller while considering the endurance issue. To address this challenge, the paper proposes a powerful, lightweight machine learning-based workload-adaptive write schemes of the NVRAM, which can increase the lifetime and reduce the energy consumption of the processors. The proposed system consists of three phases like Workload Characterization, Intelligent Compression and Memory Allocators. These phases are used for distributing the write-cycles to NVRAM, following the energy-time consumption and number of data bytes. The extensive experimentations are carried out using the IoMT (Internet of Medical things) benchmark in which the different endurance factors such as application delay, energy and write-time factors were evaluated and compared with the different existing algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号