首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
通过对低镍奥氏体不锈钢进行不同变形量的拉伸变形,研究了低镍奥氏体不锈钢冷变形和应变硬化机制。结果表明,低镍奥氏体不锈钢冷变形和应变硬化机制主要是应变诱发α′-马氏体相变和位错强化,随着变形量的增加应变诱发α′-马氏体量和位错塞积程度不断增加。低镍奥氏体不锈钢奥氏体稳定性要低于SUS304钢种,具有强烈的加工硬化效应;随着变形量的增加,应变诱发α′-马氏体量也不断增加,但应变诱发α′-马氏体增速不断降低,主要由于随着变形量的增加,变形热效应导致温度升高,奥氏体稳定性增加。  相似文献   

2.
杨卓越  苏杰  陈嘉砚  熊建新 《钢铁》2007,42(5):61-64,78
用X射线衍射技术研究了304奥氏体不锈钢变形诱发马氏体相变倾向对成分的敏感性.在液氮内的拉伸结果表明: C、Mn、Cr和Ni的含量从标准范围的上限降到下限,显著增大形变诱发马氏体相变倾向和形变强化能力,尤其是C、Mn、Cr和Ni的含量接近下限的钢在室温下拉伸形成ε马氏体和α'马氏体,其中α'马氏体快速形成使流变应力迅速上升;此外发现,在液氮温度下,变形早期ε马氏体与α'马氏体同时存在,α'马氏体的体积分数累积到约70%后,ε马氏体消失.  相似文献   

3.
为研究Cu对控轧控冷低合金耐磨钢组织及强韧性的影响,选用含Cu和不含Cu两种低合金钢板进行对比试验。借助JMatPro软件计算CCT曲线,利用OM与TEM等分析组织、析出相,万能拉伸试验机与冲击试验机测试钢的强度与低温冲击韧性。结果表明,低合金耐磨钢中添加Cu元素,奥氏体稳定性增加,使得铁素体与珠光体相变推迟,CCT曲线右移。两组试验钢控轧控冷处理后室温组织是板条马氏体加下贝氏体,含Cu试验钢马氏体含量略高且马氏体板条尺寸细小,两组试验钢基体中均发现纳米析出相(Nb,Ti)C与(Nb,Ti,Mo)C。添加质量分数0.49%Cu的耐磨钢屈服强度比未添加Cu耐磨钢高70.5MPa,并且在-60℃仍然具有较高的低温韧性。低合金耐磨钢中添加Cu有利于提高钢的强度,改善低温韧性。  相似文献   

4.
研究了节镍无磁不锈钢Cr18Ni6Mn3N的热轧及固溶后的力学性能和耐蚀性能,分析了其固溶和时效析出后的组织演变规律、冷变形过程中形变诱发马氏体相变及其磁性能.结果表明:该不锈钢的固溶组织为单相奥氏体,其力学性能和耐蚀性能均高于SUS304不锈钢;800℃保温4 h后,在晶界析出粒状氮化物,随着保温时间延长,逐渐沿晶界凸起片层状析出物并向晶内生长,保温20 h后,凸出的片层状析出物直径达20μm.冷轧压下率18.3%时尚未发现形变诱发马氏体组织,随着变形量增大,马氏体含量增多,磁导率上升,但与相同条件下的SUS304不锈钢相比,冷轧板固溶后相对磁导率可降至1.002,因此可用于低成本无磁不锈钢领域.   相似文献   

5.
 研究304奥氏体不锈钢薄板的硬度随冷轧变形量的变化规律,为奥氏体不锈钢薄板工业生产提供指导。同时,采用金相显微镜、维氏硬度测量、X-射线衍射仪和透射电镜研究了不同变形量冷轧对304不锈钢显微组织和机械性能的影响。在室温对0.5mm厚退火板材进行冷轧,使冷轧变形量从10%增加到52%。结果表明,形变诱发马氏体相变是导致304不锈钢冷轧时产生加工硬化的主要原因,冷轧可以显著提高钢的强度和硬度。当冷轧变形至40%时,304不锈钢的维氏硬度是未变形时的2.2倍,屈服强度、抗拉强度分别增大到未变形时的4.2倍(880MPa)和1.8倍(1312MPa)。  相似文献   

6.
试验用304J1奥氏体不锈钢(/%:≤0.08C、≤1.70Si、≤3.00Mn、15~18Cr、6~9Ni、1~3Cu)经10kg真空感应炉熔炼,锻成Φ40 mm钢棒,并经1080℃10 min,固溶处理、水冷。试验研究了0.05%~2.52%Cu对试验钢(/%:0.054~0.068C、0.45~0.63Si、1.82~1.95Mn、17.26~17.62Cr、6.42~6.49Ni)力学性能的影响,并对比分析了试验钢304J1和304DDQ深冲钢(/%:0.04C、0.32Si、1.17Mn、18.11Cr、8.66Ni)的30%冷变形产生50%马氏体的温度-冷加工诱变马氏体转变点Md30,堆垛层错能和深冲杯凸(CUP)值:得出将304J1钢铜含量目标成分设定为1.50%时,室温力学性能、冷加工塑性、深冲性能及经济性的匹配性最佳。工业生产表明,1.50%Cu 304J1钢0.27 mm板的深冲值≥13 mm与304DDQ钢相当。  相似文献   

7.
亚稳态奥氏体钢的形变硬化   总被引:3,自引:0,他引:3  
张旺峰  陈瑜眉  朱金华 《钢铁》2000,35(9):52-55
研究了亚稳态奥氏体不锈钢的形变硬化,结果表明:低温下由于产生应变诱发马氏体相变,其拉伸曲线硬化阶段呈现S形,硬化指数n为非恒定值,硬化率与硬化指数n随应变量的增加表现为抛物物型。  相似文献   

8.
罗永赞 《不锈》2004,(4):19-21
根据奥氏体不锈钢经深冷形变诱发马氏体相变的理论成功地制造了304HC自攻螺钉。304HC的成分见表4,其拉丝尺寸及力学性能见表5。  相似文献   

9.
美国Los Alamos国家实验室材料科学和技术分所的科研人员研究了应变速率对奥氏体不锈钢309和304L的应力一应变行为的影响。室温拉伸试验的应变速率范围从1.25×10^-4S^-1 -400S^-1,用X一射线衍射方法测定了塑性变形过程中形成的马氏体的体积百分数,用光学显微术描述了该马氏体的特性。随着应变,发现304L很容易发生相变,马氏体成核于滑移带上和滑移带交叉处。而对于309合金,并未发现应变诱导的相变。随着应变速率,合金的塑性和强度发生变化则可以根据从马氏体相变和正应变速率敏感性的硬化和由于变形加热的软化之间的竞争来解释。研究人员还对预测马氏体体积百分数随着应变而增加的现用模型进行了检查和修正,使之适合上述研究的实验数据。  相似文献   

10.
回火温度对9Ni钢低温韧度的影响研究   总被引:1,自引:0,他引:1  
为了研究不同回火温度对9Ni钢低温韧度的影响,利用OM、SEM、TEM对试验钢微观组织和断口形貌进行观察分析,研究表明:在550~600℃范围内回火,9Ni钢强度和韧度达到最佳匹配,且其他各项性能也达到最佳;回转奥氏体、碳化物及回转奥氏体诱发马氏体相变等均对低温韧度产生重要影响。  相似文献   

11.
Plastic deformation of 304 stainless steel (SS) induces transgranular (TG) carbide precipitation, which is critically dependent on deformation-induced microstructural changes occurring during thermal treatment of the SS. Uniaxial deformation of the 304 SS to 40% strain produces a high density of intersecting micro-shear bands composed of heterogeneous bundles of twin-faults and about 12–17% strain-induced α′-martensite at the intersections of the twin-faults. Thermal treatment of 670°C for 0.1–10 h, however, results in a rapid annihilation/transformation of the strain-induced martensite and the concurrent formation of zones containing mixed thermal martensite laths and fine-grained austenite, though the thermal martensite also decreases with increasing heat treatment time. Simultaneous with these thermomechanically-induced microstructural changes, TG chromium-rich carbides form at intersections of twin-faults and on fine-austenite or thermal martensite boundaries in the SS; however, no correlation between strain-induced α′-martensite and carbides was observed in this work. The mechanisms of deformation-induced microstructure and (strain-induced and thermal) martensite effects on TG carbide precipitation in 304 SS are discussed.  相似文献   

12.
含铜1Cr13 型低碳马氏体抗菌不锈钢的组织和性能   总被引:2,自引:0,他引:2  
研究了成分(%)为0.11~0.13C、13.46Cr、0~4Cu 的低碳马氏体不锈钢1100 ℃ 15 min油淬, 600℃5h 回火处理后的抗菌性、硬度和耐蚀性。实验结果表明,当钢中含2%~4% Cu时,钢淬回火后的组 织为索氏体基体上弥散分布富铜相,当钢中铜含量从2%增加至4%时,淬回火后钢的HRC 硬度值从38增加 到48,大肠杆菌的杀菌率从42%增加到95%,在5%硫酸中致钝电流和电压减少,使钢易于钝化。  相似文献   

13.
Cios  G.  Tokarski  T.  Żywczak  A.  Dziurka  R.  Stępień  M.  Gondek  Ł.  Marciszko  M.  Pawłowski  B.  Wieczerzak  K.  Bała  P. 《Metallurgical and Materials Transactions A》2017,48(10):4999-5008

This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (−60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to ~70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α′ → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov–Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  相似文献   

14.
The strain and strain rate dependence of the deformation behavior of Type 304 stainless steel sheet was evaluated by constant temperature tensile testing in the temperature range of −80 °C to 160 °C. The strain rate sensitivity, strain hardening rate, and ductility reflected the compctition of two strengthening mechanisms: strain-induced transformation of austenite to martensite and dislocation substructure formation. At low temperatures, the strain rate sensitivity and strain hardening rate correlated with the strain-induced transformation rate. A maximum in total ductility occurred between 0 °C and 25 °C, and the contributions of strain rate sensitivity and strain hardening to independent maxima with temperature of the uniform and post-uniform strains are discussed. Formerly Visiting Scientist, Department of Metallurgical Engineering, Colorado School of Mines.  相似文献   

15.
Stainless steels (SSs) having a stable and metastable austenitic phase were studied to see the influence of strain-induced phase transformation in the metastable austenitic stainless steel on the evolution of texture during cold rolling and aging. AISI 304L and 316L SS plates were unidirectionally cold rolled up to a 90 pct reduction and aged at different aging temperatures. The strain-induced transformation of austenite to α′-martensite phase and the evolution of texture in both the phases were studied as a function of rolling reduction as well as aging temperature in the metastable 304L austenitic stainless steel. The X-ray diffraction (XRD) technique was employed to quantify the volume fractions and characterize the texture of austenite and martensite phases in the rolled and aged conditions. Results are compared with the texture evolution in the stable austenitic 316L SS.  相似文献   

16.
泰山不锈钢厂采用60 t电弧炉-GOR底吹转炉精炼-160 mm×1600 mm板坯连铸的工艺流程冶炼不锈钢。通过Gleeble-1500D热模拟试验机试验研究了奥氏体不锈钢201(6.54Mn-16.71Cr-3.62Ni)和J4(8.93Mn-14.84Cr-1.08Ni-1.25Cu),铁素体不锈钢430(16.29Cr)和马氏体不锈钢410S(13.5Cr)连铸板坯的高温力学性能。结果表明,各不锈钢的第Ⅲ脆性温度区分别为201钢-665~990℃,J4钢-600~950℃,430钢-600~700℃和410S钢-720~930℃;201和J4钢采用较弱二次冷却,矫直温度分别控制为≥1010℃和≥995℃,430钢用较强二次冷却,矫直温度900~950℃;410S钢用较弱二次冷却,矫直温度≥980℃。  相似文献   

17.
The γ→α transformation in 304 stainless steel can be induced by plastic deformation at room temperature. The kinetics of strain-induced transformations have been modeled recently by Olson and Cohen. We used magnetic techniques to monitor the progress of the γ→α transformation in 304 stainless steel sheet loaded in uniaxial and biaxial tension at both low (10-3 per second) and high (103 per second) strain rates. We found that using the von Mises effective strain criterion gives a reasonable correlation of transformation kinetics under general strain states. The principal effect of increased strain rate was observed at strains greater than 0.25. The temperature increase resulting from adiabatic heating was sufficient to suppress the γ→α transformation substantially at high rates. The consequences of the γ→α transformation on mechanical behavior were noted in uniaxial and biaxial tension. Uniaxial tension tests were conducted at temperatures ranging from 50 to -80°C. We found that both the strain hardening and transformation rates increased with decreasing temperature. However, the martensite transformation saturates at ≈85 pct volume fraction α. This can occur at strains less than 0.3 for conditions where the transformation is rapid. Once saturation occurs, the work hardening rate decreases rapidly and premature local plastic instability results. In biaxial tension, the same tendency toward plastic instability associated with high transformation rates provides a rationale for the low biaxial ductility of 304 stainless steel.  相似文献   

18.
The residual microstructure and mechanical response of shock-loaded stainless steel (AISI-304) of four different grain sizes-23, 55, 85 and 187 Μm-was investigated. In addition to mechanical twinning and planar dislocation arrays, transformation to both e and α martensite occurred in all shock-loaded specimens but became more extensive with decreasing grain size. In comparison to the Hall-Petch behavior of yield and early flow stress observed for the material after 5.2 pct cold rolling, the strengthening efficiency of shock loading decreased with increasing grain size. Shock loading enhanced the strain-induced transformation to α martensite during subsequent tensile deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号