首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the present status of InGaAs quantum dot lasers on GaAs sub-strates emitting near and at 1.3 μm. Such lasers are shown to be extremely promising for cost-efficient commercial applications in optical fiber communication. Threshold current densities a low as ∼20 Acm−2 per QD sheet are achieved. Room temperature continuous wave operation at 2.7 W for broad stripe devices is demonstrated. The maximum differential efficiency amounts to 57%. Moreover, single lateral mode continuous wave operation with a maximum output power of 110 mW is realized. Prospects for 1.3 μm GaAs-based vertical cavity surface emitting lasers are given. We also show that the longest wavelength of QD GaAs-based light emitting devices can be potentially extended to 1.7 μm.  相似文献   

2.
The feasibility of lasing at a wavelength close to 1.3 μm is demonstrated in InAs quantum-dot structures placed in an external InGaAs/GaAs quantum well. It is shown that the required wavelength can be attained with the proper choice of thickness of the InAs layer deposited to form an array of three-dimensional islands and with a proper choice of mole fraction of InAs in the InGaAs quantum well. Since the gain attained in the ground state is insufficient, lasing is implemented through excited states in the temperature interval from 85 K to 300 K in a structure based on a single layer of quantum dots. The maximum attainable gain in the laser structure can be raised by using three rows of quantum dots, and this configuration, in turn, leads to low-threshold (70 A/cm2) lasing through the ground state at a wavelength of 1.26 μm at room temperature. Fiz. Tekh. Poluprovodn. 33, 1020–1023 (August 1999)  相似文献   

3.
We report on a study characterizing internal losses and the gain in InGaAsSb/InAsSbP diode-heterostructure lasers emitting in the mid-infrared (3–4 μm). Numerical simulations of the current dependence of the intensity of spontaneous emission above the laser threshold and of the differential quantum efficiency allowed us to determine the intraband absorption k 0 ≈5.6×10−16 cm2. The cavity-length dependence of the threshold current is used to estimate the internal losses at zero injection current α 0≈5 cm−1. Calculations of the internal losses at laser threshold showed that they increase more than fourfold when the cavity length is decreased from 500 μm to 100 μm. The temperature dependence of the differential quantum efficiency is explained on the assumption that intraband absorption with hole transitions into a split-off band occurs. It is shown that the maximum operating temperature of “short-cavity” lasers is determined by the intraband absorption rather than by Auger recombination. The internal losses are shown to have a linear current dependence. The separation of the quasi-Fermi levels as a function of current demonstrates an absence of voltage saturation of the p-n junction above threshold. Fiz. Tekh. Poluprovodn. 33, 759–763 (June 1999)  相似文献   

4.
Previous publications concerned with the development and investigation of InAsSb/InAsSbP double heterostructure lasers emitting at 3–4 μm fabricated by liquid phase epitaxy are reviewed. In pulsed mode, the maximum operating temperature of the lasers is 203 K, the characteristic temperature is 35 K, and differential quantum efficiency is 20±5% at 77K. Mesa-stripe lasers with a 10-to 30-μm stripe width and a 200-to 500-μm cavity length can operate in CW mode up to 110 K. The total optical output power of more than 10 mW at λ=3.6 μm is obtained at T=82 K in CW mode. The output power per mode does not exceed 2 mW/facet. A single-mode lasing is achieved in the temperature range of 12–90 K. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 11, 2000, pp. 1396–1403. Original Russian Text Copyright ? 2000 by Danilova, Imenkov, Sherstnev, Yakovlev.  相似文献   

5.
The CdxHg1−xTe compounds are well suited to the design of resonant microcavity devices. Indeed these compounds display a wide variation of bandgap and refractive index with composition, while the lattice parameter remains practically unchanged. Microcavities resonating in the 3–5 μm range have been prepared by molecular beam epitaxy. Light emitting diodes (LEDs) are obtained by stacking a lower Bragg mirror (10.5 periods) which is doped n-type and a nominally undoped cavity medium containing a 50 nm active layer (CdTe-HgTe pseudo-alloy). The upper mirror is a gold layer deposited on the cavity, which is partly p-type doped. The diode emission is observed under direct bias, up to room temperature, in coincidence with the cavity resonance mode (linewidth 8 meV). It is much narrower than the inhomogeneous linewidth of the active layer (60 meV at 300K). The directivity is also much better. The diode properties are only very slightly dependent on temperature. A similar device can also be designed to make an infrared detector whose active layer thickness is reduced with respect to conventional detectors. The detector efficiency at the resonance wavelength may be increased by a factor close to the cavity finesse. With 16.5 periods in the lower mirror and a dielectric mirror as upper mirror (seven periods of ZnS/YF3), it has been possible to make a cavity resonating at 3.06 μm whose quality factor reaches 350. By photopumping the cavity across the dielectric mirror with a YAG microlaser, a laser emission occurred at the cavity resonance. At 10K, the laser threshold is 45 kW/cm2 and the linewidth is only 1.7 meV. These results demonstrate the usefulness of the microcavity concept for designing new devices such as LED or lasers which could be the basis for new applications of CdHgTe compounds.  相似文献   

6.
Current-tunable diode lasers with narrow emission lines for laser spectroscopy in the 3.2–3.4 μm wavelength range are developed. The lasers, based on an InAsSb/InAsSbP double heterostructure, have a wide-stripe cavity. The wave number increases from 3030 to 3034 cm−1 as the current is raised from 1.5 to 3 times the threshold value at 70 K, while the full width at half-maximum of the laser line decreases from 18 to 10 MHz. It is demonstrated that the linewidth is determined by fluctuations of the cavity resonance frequencies as a result of fluctuations in the concentration of nonequilibrium charge carriers. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 3, 2001, pp. 375–379. Original Russian Text Copyright ? 2001 by Imenkov, Kolchanova, Kubat, Moiseev, Civiš, Yakovlev.  相似文献   

7.
We report a simultaneous shape stabilization and size equalization after shape transformation of InGaAs self-organized quantum dots (QDs) formed via a fractional monolayer (ML) deposition technique. The density of QD increases rapidly from an initial value of 110±10/μm2 (at a total deposition of 4 ML) to 270±30/μm2 (at 5 ML) and saturates at a level of 240±20/μm2 (at 10 ML). At an intermediate stage of 7 ML deposition, bimodal QD height (peaked at 8.5 nm and 14.5 nm) and aspect ratio (peaked at 0.18 and 0.26) distributions occur, confirming the QD shape transformation from a shallower to a steeper shape. The eventual convergence in lateral size, height and aspect ratio is the direct result of the simultaneous QD size equalization and shape stabilization. The QD size and shape evolution is also substantiated by the low temperature (4 K) photoluminescence (PL) data taken from samples with QDs capped by GaAs.  相似文献   

8.
Single-mode edge emitting GaAs/AlGaAs quantum cascade microlasers at a wavelength of about 11.4μm were realized by shortening the Fabry-Perot cavity length. The spacing of the longitudinal resonator modes is inversely proportional to the cavity length. Stable single-mode emission with a side mode suppression ratio of about 19 dB at 85 K for a 150-μm-long device was demonstrated.  相似文献   

9.
Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm−2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 μm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.  相似文献   

10.
With good composition control in both p-type cap and n-type base LPE layers, it is possible to make barrier-free two-layer P-on-n HgCdTe heterojunction photodiodes with very long cutoff wavelengths. Diode arrays with good RoA operability, good quantum efficiency, and low 1/f noise at 60K have been demonstrated at cutoff wavelengths to 16.3μm. The diode performance continues to improve at lower temperatures, following a diffusion-current trend to at least 35K. Measured RoA values of 2×105 ohm-cm2 for an 18 μm cutoff at 35K are the highest reported at this very long wavelength. A simple defect model applied to the area dependence of RoA at 40K implied a defect areal density of 3×104 cm−2 and a defect impedance of 3×106 ohm.  相似文献   

11.
From emissometry measurements in lightly doped Si at elevated temperatures, we have observed an anomalous absorption band in the wavelength range of 1–5 μm. The wavelength at which the band peaks, λ≈2.3 μm, shows a negligible dependence on temperature while the peak intensity increases with temperature presumably as a result of the increasing intrinsic carrier concentration. Spitzer and Fan reported a similar absorption band in direct absorption measurements at room temperature for n-type Si with extrinsic electron concentrations of 1014 to 1019cm−3. No such structure was found in extrinsic p-type Si. Spitzer and Fan were unable to identify the mechanism for this anomalous absorption. In both the experiments, this absorption of free electrons is due to intraband transitions in the conduction band from the Δ1 conduction band edge across an energy gap of E ∼ 0.5 eV to a higher lying Δ2′ conduction band.  相似文献   

12.
This paper presents recent developments that have been made in Leti Infrared Laboratory in the field of molecular beam epitaxy (MBE) growth and fabrication of medium wavelength and long wavelength infrared (MWIR and LWIR) HgCdTe devices. The techniques that lead to growth temperature and flux control are presented. Run to run composition reproducibility is investigated on runs of more than 15 consecutively grown layers. Etch pit density in the low 105 cm−2 and void density lower than 103 cm−2 are obtained routinely on CdZnTe substrates. The samples exhibit low n-type carrier concentration in the 1014 to 1015 cm−3 range and mobility in excess of 105 cm2/Vs at 77 K for epilayers with 9.5 μm cut-off wavelength. LWIR diodes, fabricated with an-on-p homojunction process present dynamic resistance area products which reach values of 8 103 Ωcm2 for a biased voltage of −50 mV and a cutoff wavelength of 9.5 μm at 77 K. A 320 × 240 plane array with a 30 μm pitch operating at 77 K in the MWIR range has been developed using HgCdTe and CdTe layers MBE grown on a Germanium substrate. Mean NEDT value of 8.8 mK together with an operability of 99.94% is obtained. We fabricated MWIR two-color detectors by the superposition of layers of HgCdTe with different compositions and a mixed MESA and planar technology. These detectors are spatially coherent and can be independently addressed. Current voltage curves of 60 × 60 μm2 photodiodes have breakdown voltage exceeding 800 mV for each diode. The cutoff wavelength at 77 K is 3.1 μm for the MWIR-1 and 5 μm for the MWIR-2.  相似文献   

13.
The power conversion efficiency of laser diodes with an array of quantum dots in the active region is analyzed. A model is proposed which allows analytical determination of the optimal cavity length corresponding to the highest conversion efficiency for a given output power. A comparison is made with experimental data for high-power lasers based on submonolayer quantum dots emitting at 0.94 μm. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 34, No. 5, 2000, pp. 628–632. Original Russian Text Copyright ? 2000 by Zhukov, Kovsh, Mikhrin, Maleev, Odnoblyudov, Ustinov, Shernyakov, Kondrat’eva, Livshits, Tarasov, Ledentsov, Kop’ev, Alferov, Bimberg.  相似文献   

14.
Hydrogen passivation effects are found to be much more prevalent in p-type 6H-SiC relative to n-type material. Reactivation of passivated B acceptors occurs at ~700°C, corresponding to a reactivation energy of ~3.3 eV. This is much higher than for passivated acceptors in Si, where reactivation occurs at ≤200°C. The incorporation depth of 2H from a plasma at 200°C is ≤0.1 μm in 30 min, corresponding to a diffusivity approximately two orders of magnitude lower than in Si at the same temperature. The average energy of ions in the 2H plasma has an influence on the peak concentration of incorporated deuterium and on its diffusion depth.  相似文献   

15.
This paper presents a comprehensive study of the effects of annealing silicon dioxide encapsulated CdSe films in oxygen on the microstructure, resistivity, photosensitivity and energy levels. The energy levels were investigated by using the independent methods of thermally stimulated current, photocurrent spectral response, and Hall measurements. The film structure is wurtzite with grains of average size 0.35 μm, which extend through the thickness of the films. Annealing the films in oxygen at 450°C increases the resistivity from 10 ohm cm to 106 ohm cm. The electron mobility, which has an activation energy of 0.08 eV, remains constant at about 100 cm2 V−1 s−1 during the anneal steps. The change in the resistivity is due to a combination of thermal rearrangement and oxygen diffusing uniformly into the films. Various energy levels ranging from 0.11 eV to 1.3 eV were detected and the density of all these decreased on annealing.  相似文献   

16.
Design and fabrication of a parallel optical transmitter are reported.The optimized 12 channel parallel optical transmitter,with each channel’s data rate up to 3Gbit/s,is designed,assembled,and measured.A topemitting 850nm vertical cavity surface emitting laser(VCSEL) array is adopted as the light source,and the VCSEL chip is directly wire bonded to a 12 channel driver IC.The outputs of the VCSEL array are directly butt coupled into a 12 channel fiber array.Small form factor pluggable (SFP) packaging technology is used in the module to support hot pluggable in application.The performance results of the module are demonstrated.At an operating current of 8mA,an eye diagram at 3Gbit/s is achieved with an optical output of more than 1mW.  相似文献   

17.
Low energy implantation is one of the most promising options for ultra shallow junction formation in the next generation of silicon BiCMOS technology. Among the dopants that have to be implanted, boron is the most problematic because of its low stopping power (large penetration depth) and its tendency to undergo transient enhanced diffusion and clustering during thermal activation. This paper reports an experimental study of secondary defect profiles of low energy B implants in crystalline silicon. Shallow p+n junctions were formed by low energy B implantation—1015 cm−2 at 3 keV—into a reference n-type crystalline silicon or pre-amorphized n-Si with germanium −1015 cm−2 at 30 keV, 60 keV, and 150 keV. Rapid Thermal Annealing (RTA) for 15 s at 950°C was then performed. Secondary defect profiles induced by this process are measured with isothermal transient capacitance in association with Deep Level Transient Spectroscopy (DLTS). Relatively high concentrations of electrically active defects have been obtained up to 3.5 μm into the crystalline silicon bulk. The relation of these defects with boron is discussed. The results of this study are in agreement with boron transient enhanced diffusion in Si-substrate as has been reported by Collart using Secondary Ion Mass Spectrometry (SIMS) measurements.  相似文献   

18.
Very long wavelength infrared (VLWIR; 15 to 17 μm) detectors are required for remote sensing sounding applications. Infrared sounders provide temperature, pressure and moisture profiles of the atmosphere used in weather prediction models that track storms, predict levels of precipitation etc. Traditionally, photoconductive VLWIR (λc >15 μm) detectors have been used for sounding applications. However, photoconductive detectors suffer from performance issues, such as non-linearity that is 10X – 100X that of photovoltaic detectors. Radiometric calibration for remote sensing interferometry requires detectors with low non-linearity. Photoconductive detectors also suffer from non-uniform spatial optical response. Advances in molecular beam epitaxy (MBE) growth of mercury cadmium telluride (HgCdTe) and detector architectures have resulted in high performance detectors fabricated in the 15 μm to 17 μmm spectral range. Recently, VLWIR (λc ∼ 17 μm at 78 K) photovoltaic large (1000 μm diameter) detectors have been fabricated and measured at flux values targeting remote sensing interferometry applications. The operating temperature is near 78 K, permitting the use of passive radiators in spacecraft to cool the detectors. Detector non-AR coated quantum efficiency >60% was measured in these large detectors. A linear response was measured, while varying the spot size incident on the 1000 μm detectors. This excellent response uniformity, measured as a function of spot size, implies that low frequency spatial response variations are absent. The 1000 μm diameter, λc ∼ 17 μm at 78 K detectors have dark currents ∼160 μA at a −100 mV bias and at 78 K. Interfacing with the low (comparable to the contact and series resistance) junction impedance detectors is not feasible. Therefore a custom pre-amplifier was designed to interface with the large VLWIR detectors operating in reverse bias. A breadboard was fabricated incorporating the custom designed preamplifier interfacing with the 1000 μm diameter VLWIR detectors. Response versus flux measurements were made on the large VLWIR detectors and non-linearity <0.15% was measured at high flux values in the 2.5×1017 to 3.5×1017 ph-cm−2sec−1 range. This non-linearity is an order of magnitude better than for photoconductive detectors.  相似文献   

19.
A CdHgTe resonant cavity light emitting diode (RCLED) is proposed as a new infrared emitter. The device is prepared by molecular beam epitaxy on a CdZnTe substrate. A 10.5 periods Bragg mirror is first deposited. The cavity material is made of Cd0.75Hg0.25Te and contains a wide well (50 nm) designed to emit at 3.2 μm. The last three periods of the mirror are n-type doped while the cavity material is covered by a thin p-type CdZnTe layer. A gold layer closes the cavity, serving as the second mirror of a Fabry-Perot cavity tuned around 3.18 urn. It also provides an ohmic contact to the p-region. Under forward bias, the emission spectrum displays a narrow peak (8 meV full width at half maximum) corresponding to the cavity resonance. The position and linewidth of this line are independent of temperature. The directivity of the diode is also improved with respect to a conventional emitter, in agreement with theoretical expectations. Taking advantage of the spectral properties of the RCLED a new multispectral device has been fabricated.  相似文献   

20.
The backward current of Schottky contacts on unintentionally doped GaN samples prepared by different dry-etching methods was investigated. It was found that an ion beam etching (IBE) process with an accelerating voltage of 250 V under an angle of 20 degrees to minimize channeling achieves the best results. The backward current in this case is 4 × 10−10 A/μm2 compared to the backward current of the unetched sample of 1 × 10−7 A/μm2 at −100 V. With this process, recessed gate HEMTs on AlGaN/GaN heterostructures grown by low pressure MOVPE were fabricated and compared to HEMTs without recess. The applied gate recess etching technique improves the leakage current by nearly a factor of two. The maximum transconductance is improved from 40 mS/mm to 60 mS/mm at a gate length of 4 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号