首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse (Fabaceae) grains, such as peas and beans, are derived from crops that are usually cultivated in the absence of mineral nitrogen fertiliser as these crops can obtain their nitrogen requirement naturally from the air via biological nitrogen fixation. Therefore, pulses present a significantly lower greenhouse gas (GHG) footprint than crops demanding nitrogen fertiliser, whilst also offering significant quantities of starch for the brewing and distilling industries. Mitigation of agriculture derived GHG emissions through utilisation of pulses can have a positive environmental impact. To this end, the potential of exploiting dry, dehulled faba bean (Vicia faba L.) kernel flour as an adjunct for beer production was evaluated. The impact of different temperature regimes and commercial enzymes were assessed for their effect on wort: viscosity; run‐off rate; primary amino nitrogen content and, fermentability. Faba beans demonstrated insufficient endogenous enzyme capacity for starch conversion and generated a viscous wort. However, using a stepped temperature mashing regime and exogenous enzyme additions, the faba bean wort was comparable in processability and fermentability to that of 100% malted barley wort. The faba based beer and co‐product qualities demonstrate the environmental, nutritional and commercial potential of pulses in brewing. © 2020 The Authors. Journal of the Institute of Brewing published by John Wiley & Sons Ltd on behalf of The Institute of Brewing & Distilling  相似文献   

2.
Indian black rice (Chakhao Poireiton) is a pigmented variety, rich in anthocyanins and other phytonutrients. With growing interest in the use of local raw materials in brewing, it was of interest to develop protocols for malting and brewing with Chakhao Poireiton to see whether the antioxidant capacity of anthocyanins could be delivered into finished beer. Protocols for brewing with 100% malted rice were developed and the performance of Indian black rice compared with that of an Italian white rice cultivar suited to brewing. The apparent fermentabilities of rice worts were 69.5% (black) and 67.3% (white), yielding beers of 3.28 and 3.19% ABV respectively. Black rice worts were deficient in free amino nitrogen (83.5 mg/L relative to 137 mg/L for white rice) and would need nitrogen supplementation to avoid issues with fermentation, e.g. elevated diacetyl. Black rice beer had an orange-red hue as a result of extraction of anthocyanin pigments (2.84 mg/L). The oxidative stability of 100% rice beers was measured using electron spin resonance spectroscopy and both samples were found to be unusually stable. Interestingly, when rice beers were blended with a control barley malt derived lager in varying proportions (10, 25, 50%), the oxidative stability was improved, relative to the control lager, particularly so in the case of black rice beer, which contained an antioxidant capacity over and above that of the white rice beer. Future studies are required to determine whether the noted oxidative stability of 100% rice malt beers results in a more flavour-stable beer. © 2019 The Institute of Brewing & Distilling  相似文献   

3.
In the brewing industry, barley malt is often partially replaced with adjuncts (unmalted barley, wheat, rice, sorghum and corn in different forms). It is crucial, however, to preserve constant quality in the beer to meet the expectations of consumers. In this work, how the addition of corn grist (10 and 20%) influences the quality of wort and beer was examined. The following parameters were analysed: wort colour, dimethyl sulphide (DMS) and protein content, non‐fermentable extract, extract drop during fermentation, alcohol content and the attenuation level of the beer, together with filtration performance. The samples (all‐malt, and adjunct at 10 and 20% corn grist) were industrial worts and the beers produced in a commercial brewery (3000 hL fermentation tanks). The application of 10 and 20% corn grist had an effect on the wort colour, making it slightly lighter (11.1 and 10.5°EBC, respectively) than the reference barley malt wort (12.2°EBC). The free amino nitrogen level, DMS and non‐fermentable extract were significantly lower in the worts produced with the adjunct; the alcohol content and attenuation levels were higher in the beers produced with adjunct. The use of corn grist, at the level of up to 20% of total load, appears to affect some of the technological aspects of wort and beer production, but it does not significantly influence the final product characteristics. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

4.
Research reports on extracts, proteins, total nitrogen and free amino nitrogen content of sorghum malt and worts obtained from mashes indicate that sorghum is potentially an alternative substrate for conventional beer brewing in the tropics. Remarkable variations in biochemical characteristics among different sorghum cultivars affect their optimal malting conditions. Factors such as temperature and time of steeping and germinating of grains with their intrinsic enzymic activities, and kilning temperature determine the quality of malt. Further works on mashing, viscosity and fermentability of worts as well as the character of the resulting beers, such as alcoholic content, colour, taste and specific gravity tend to confirm the status of sorghum as a credible substitute for barley in beer brewing. This review reports on progress made in the use of sorghum for brewing beer.  相似文献   

5.
Production of beer using native and hydrothermically treated barley (extruded barley flakes) as malt substitute was examined in this work. Nine samples of beer were produced on a laboratory scale, and malt was substituted (10–40%) by native barley flour or hydrothermically treated barley. Infusion mashing was employed, and native barley flour was pretreated by cooking. Worts were boiled with 150 g/hl native hops for one hour. Saccharomyces uvarum strain 112 was used for the fermentation, at 8°C, for 10 days. The results showed that the fermentation was normal in all samples. The use of hydrothermically treated barley in beer production produced beers, similar to those made with native barley as malt substitute, minimising the time needed for beer production and maximising the capacity of the brewhouse.  相似文献   

6.
Phenolic acids in beer are important because they can be decarboxylated to phenols, which usually impart off-flavours. An improved high performance liquid chromatographic system was used to monitor phenolic acids and phenols during the brewing process. Ferulic acid was the most significant phenolic acid found in beers prepared from malted barley. Extraction of ferulic acid from malt involved an enzymatic release mechanism with an optimum temperature about 45°C. Mashing-in at 65°C significantly decreased the release of free ferulic acid into the wort. Wort boiling produced 4-vinyl guaiacol by thermal decarboxylation, in amounts (0.3 mg/L) close to its taste threshold, from worts that contained high contents of free ferulic acid (> 6 mg/L). The capacity of yeasts to decarboxylate phenolic acids (Pof+ phenotype) was strong in wild strains of Saccharomyces and absent in all lager brewing yeast and most ale brewing yeasts. Some top-fermenting strains, especially those used in wheat beer production, possessed a weak decarboxylating activity (i.e. Pofδ). During storage of beers there were appreciable temperature-dependent losses of 4-vinyl guaiacol. These results indicated that the production of 4-vinyl guaiacol is amenable to close technological control.  相似文献   

7.
The aim of this study was to investigate the influences of unmalted barley on the brewing process and the quality of the resulting beer‐like beverages, with the main focus on the oxidative stability, using traditional beer analyses, GC‐MS for the determination of aging compounds and electron paramagnetic resonance spectroscopy to determine free radical activity. For the investigation, brews with different barley proportions and 75% barley brews with a colour malt addition, to compensate for a lower colour using barley, were produced. In general, it can be said that beers with a proportion of up to 50% barley achieved a comparable or higher extract yield and final attenuation owing to the combined effectiveness of the malt and microbial enzymes. Although all analytical values were within the normal range according to Methodensammlung der Mitteleuropäischen Brautechnischen Analysenkommission (MEBAK), a slight decrease in total polyphenols and free amino nitrogen content was observed. Also in response to higher barley portions, an increase of higher molecular weight proteins and β‐glucan was detected. Barley is not exposed to heat and oxidative stress in the malting plant, which explains the lower values of the thiobarbituric acid index and colour as an indicator of Maillard reaction products in the resulting wort and beer. Additionally, the results demonstrate a slower increase of aging compounds during beer storage with increasing barley proportions. Furthermore, it was observed that higher barley proportions led to a better oxidative stability indicated by a lower radical generation (T450‐value) in wort and an increasing beverage antioxidant index/endogenous antioxidative potential (BAX/EAP value) in the final beverage. The case of ‘barley beers’ showed that the positive effect of barley on the oxidative beer stability was greater than the negative effect of the addition of colour malt, to adjust the colour of a 100% malt beer. In sensory comparison with beer produced with 100% malt, the beers brewed with a barley proportion up to 50% showed a slight flavour preference and up to a 75% equivalent evaluation. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

8.
Delaying flavour staling, to prolong the shelf life of beer, is one of the greatest challenges facing the brewing industry today. In this study, a series of lager beers were brewed using five European barley varieties and four chemical indicators of the degree of beer ageing were correlated with the sensory evaluation: E-2-nonenal, β-damascenone, 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde (5-HMF). A statistical strategy using principal component analysis and multiple linear regression was applied to draw relationships between the sensory and chemical data sets. Additionally, the relative significance of each of the chemical data on the organoleptic stability of beer was evaluated within the method. 5-HMF was the only studied carbonyl compound whose concentration cannot be used for predicting the total taste score of beers. E-2-nonenal, in contrast, was found to be the most discriminant carbonyl compound under consideration for predicting the flavour stability of beer.  相似文献   

9.
Sorghum beer samples were brewed in a pilot plant operation using either sorghum grain or maize grits as starchy adjunct in order that the nutritive content of the beers could be compared. Significantly higher ethanol, thiamin, nicotinic acid, ash, phytate, zinc, copper, manganese, iron, magnesium, potassium and phosphorus concentrations were found in beers brewed with sorghum adjunct. Sorghum adjunct beers can therefore make a greater contribution to the nutritional requirements of the Southern African beer drinker than beers brewed with maize grits. The results obtained suggest that the use of sorghum adjunct in the brewing of sorghum beer should be encouraged for economic and dietary reasons.  相似文献   

10.
Using oats as a raw material in brewing has recently become the focus of increased interest. This is due to research findings that have shown that oats can be consumed safely by coeliac sufferers. It is also a response to consumer demand for products with novel sensory properties. In this study, beer was produced entirely from oat malt, from barley malt and from oat and barley malts mixed with various quantities of unmalted oats. Compared with barley wort, wort made from malted oats provided a lower extract content and had a higher protein content, but a lower free amino nitrogen content (FAN). The oat wort also showed increased viscosity and haze. The addition of unmalted oats during wort production produced significant changes in the physico‐chemical parameters of both oat and barley worts and beers. Unmalted oats caused an increase in wort viscosity and haze, and a reduction in total soluble nitrogen and FAN. Unmalted oats also contributed to lowering the concentration of higher alcohols and esters. Beer made from 100% oat and barley malts exhibited a similar alcohol content. The use of an oat adjunct in both cases resulted in a lower ethanol content. The introduction of enzyme preparations during the production of wort with oat adjunct had many benefits: increased extract content and FAN; a higher volume of wort; and a lower viscosity that led to faster wort filtration. This research suggests that the use of enzymes is necessary to make production using a high proportion of oats in the grist profitable. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

11.
Potassium is major nutritional factor influencing plants' ability to overcome stress. Thus the effect of this nutrient on plant growth and symbiotic nitrogen fixation could be critical. A study was conducted to evaluate the influence of three levels of potassium fertiliser (0·1, 0·8 and 3·0 mM potassium) and two day/night temperature regimes (30°C/23°C—supra-optimal and 23°C/18°C—optimal) on the vegetative growth and symbiotic nitrogen fixation of two legumes. The crops selected were faba bean, an amide producing temperate species, and French beans, a ureide-producing tropical legume. Potassium increased relative growth rates of faba bean to a greater extent than in French beans with 3·0 mM potassium under the high temperatures. The influence of potassium was less evident at the lower temperature. Specific leaf weights of both species were reduced by potassium indicating the influence of this nutrient in the process of translocation of photosynthates. Total nitrogen concentrations of both species were lower and potassium concentrations were greater under supra-optimal temperatures. Nodulation was not observed in faba beans at this temperature. Potassium increased nodulation and nitrogen fixation of faba bean under optimal temperatures and at both temperatures in French beans. In contrast, specific activity of nodules and percentage nitrogen derived from fixation were not affected by potassium at both temperatures. Potassium reduced the impact of high temperatures especially in temperate faba beans when compared with tropical French beans by enhancing vegetative growth, nodulation and total tropical nitrogen fixation.  相似文献   

12.
Small scale mashes (50 g total grist) with grists containing up to 50% by weight of extruded whole sorghum produced worts of high extract yield and low viscosity. Increasing the proportion of extruded sorghum in the grist resulted in decreasing wort filtration volume, total nitrogen and free amino nitrogen content. The wort filtration behaviour of mashes containing sorghum extruded at 175°C was superior to that of mashes containing sorghum extruded at 165°C or 185°C. The results from such small scale mashing experiments suggested that extruded sorghum compared favourably to extruded barley and extruded wheat as a brewing adjunct. Worts and beers were produced on a pilot brewery scale (100 1) from grists comprising 70% malt + 30% extruded sorghum and 100% malt under isothermal infusion mashing conditions. Mashes containing sorghum extruded at 175°C showed comparable wort filtration behaviour to that of the all malt control mash whereas mashes containing sorghum extruded at 165°C or 185°C showed poor wort filtration behaviour. Worts produced from grists containing extruded sorghum fermented more quickly than the control wort and attained lower values of final gravity. The resulting beers were filtered without difficulty. Beers produced from grists containing extruded sorghum contained lower levels of total nitrogen and free amino nitrogen compared to the control beer consistent with extruded sorghum contributing little or no nitrogenous material to the wort and beer. Beers brewed from grists containing extruded sorghum were of sound flavour and showed reasonable foam stability behaviour.  相似文献   

13.
Laboratory wheat beers were brewed with different wheat varieties of different protein content (8.7–14.4%) and with five different barley malts, varying in degree of modification (soluble protein: 3.9–6.9%). In a first series of experiments, it was investigated whether wheat positively influences the foam stability, a major characteristic of wheat beers. NIBEM and Rudin (CO2) foam analyses revealed that the effect of wheat on foam stability depended on the barley malt used for brewing. When using malt with high foaming potential, wheat exerts a negative influence. However, wheat added to over‐modified malt with less foam promoting factors, ameliorates beer foaming characteristics proving that wheat contains foam active compounds. In addition, Rudin (N2) values suggested that wheat positively influences foam stability by decreasing liquid drainage, probably caused by a higher beer viscosity and/or a finer foam bubble size distribution. Furthermore, the haze in wheat beers, which is another important quality characteristic of these beers, was investigated. Permanent haze readings of the 40% wheat beers were lower than 1.5 EBC haze units. For 20% wheat beers, an inverse relation between the permanent haze (9.4–19.3 EBC haze units) and the protein content of the wheat was established. The barley malt used for brewing also influenced permanent haze readings. A positive correlation between the modification degree of the malt and the permanent haze intensity was found. It was concluded that the choice of raw materials for wheat beer brewing considerably influences the visual properties of the beer.  相似文献   

14.
The hordein proteins found in beer are not suitable for gluten‐sensitive consumers. Hordeins are storage proteins found in barley and have limited solubility in water. It is not currently known if the nitrogen concentration of barley directly impacts on the hordeins present in beer. In this study a controlled malting on eight barley cultivars was performed and a single cultivar model beer was produced from each. The single cultivar model beers were then examined for differences in content of hordeins. The quality of barley and malt was assessed and the parameters measured were compared with the beer hordeins using a Pearson correlation matrix. The results showed significant differences in the content of beer hordeins, depending on the barley malt used. Correlations between results showed a positive relationship to malt nitrogen and a negative relationship to friability. The results suggest it may be possible to optimize the choice of the barley cultivar and the malting conditions in order to produce a beer low in hordeins. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

15.

BACKGROUND

This study provides the first detailed investigation into the effect of partially substituting barley malt with quinoa (Chenopodium quinoa Willd.) on the characteristics of wort and beer. Quinoa seeds and flakes were compared in terms of their suitability for brewing. The benefits of applying a commercial enzyme mixture during beer production with quinoa were also investigated.

RESULTS

These findings show that quinoa is a good starchy raw material for brewing. Even without exogenous enzymes, it is possible to substitute barley malt with up to 30% quinoa. The form in which quinoa is used has a negligible influence on the quality of the wort and beer. The foam stability of beer made with quinoa was better than that of all‐malt beer, despite there being a lower level of soluble nitrogen in quinoa beer in comparison with all‐malt beer and more than twice the amount of fat in quinoa in comparison to barley malt.

CONCLUSION

The addition of unmalted quinoa does not give unpleasant characteristics to the beer and was even found to have a positive effect on its overall sensory quality. This offers brewers an opportunity to develop good beers with new sensory characteristics. © 2018 Society of Chemical Industry  相似文献   

16.
17.
BACKGROUND: Brewing with 100% barley using the Ondea® Pro exogenous brewing enzyme product was compared to brewing with 100% barley. The use of barley, rather than malt, in the brewing process and the consequences for selected beer quality attributes (foam formation, colloidal stability and filterability, sensory differences, protein content and composition) was considered. RESULTS: The quality attributes of barley, malt, kettle‐full‐wort, cold wort, unfiltered beer and filtered beer were assessed. A particular focus was given to monitoring changes in the barley protein composition during the brewing process and how the exogenous OndeaPro® enzymes influenced wort protein composition. All analyses were based on standard brewing methods described in ASBC, EBC or MEBAK. To monitor the protein changes two‐dimensional polyacrylamide gel electrophoresis was used. CONCLUSION: It was shown that by brewing beer with 100% barley and an appropriate addition of exogenous Ondea® Pro enzymes it was possible to efficiently brew beer of a satisfactory quality. The production of beers brewed with 100% barley resulted in good process efficiency (lautering and filtration) and to a final product whose sensory quality was described as light, with little body and mouthfeel, very good foam stability and similar organoleptic qualities compared to conventional malt beer. In spite of the sensory evaluation differences could still be seen in protein content and composition. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Beer production with up to 40% unmalted cereals such as barley, wheat, rice and maize is legally allowed and thus practised in many European countries. The use of oats and sorghum as brewing adjuncts has great potential for creating new beer types/flavours and saving costs. In contrast to oats, sorghum is not as well known within Europe; however, its versatility makes it a very promising crop for exploitation in these temperate‐zone regions. This review describes the brewing‐relevant characteristics of unmalted oat and sorghum grain, investigates the role and properties of endogenous/exogenous enzymes during mashing, discusses the processability/quality of mashes, worts and beers produced with up to 40% oat or sorghum adjunct, and examines the effectiveness/limitations of endogenous enzymes as well as the benefits of the application of exogenous enzymes. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

19.
On the basis of results obtained in micro-brews four beers were produced on a 50 litre scale with 50% of the following adjunct materials: debranned sorghum, extruded debranned sorghum, corn starch and extruded corn starch. The extruded materials were processed in an infusion mash while the regular adjuncts were submitted to a preliminary boil, followed by a cooling step (to 45°C) and a subsequent infusion mash. The results indicate a normal fermentation in all cases, no impact of extrusion upon the colloidal stability and the colour of the resulting beers although the saccharification and filtration rates are seriously impaired during the production process inter alia due to the presence of intact starch granules in the extruded products. If these problems could be overcome, it seems perfectly possible to produce beers with high percentages of extruded adjuncts containing no nitrogeneous substances. Indeed, extrusion of debranned sorghum leads to the presence in beer of nitrogen containing compounds (e.g. alkylpyrazines) responsible for highly obnoxious flavours described by a professional taste panel as giving “artificial”, “coffee”, “burnt” or “caramel” odours. These negative flavour characteristics are absent in the beer produced with 50% of extruded corn starch.  相似文献   

20.
BACKGROUND: It has been claimed that beer is one of the richest sources of silicon in the diet; however, little is known of the relationship between silicon content and beer style and the manner in which beer is produced. The purpose of this study was to measure silicon in a diversity of beers and ascertain the grist selection and brewing factors that impact the level of silicon obtained in beer. RESULTS: Commercial beers ranged from 6.4 to 56.5 mg L?1 in silicon. Products derived from a grist of barley tended to contain more silicon than did those from a wheat‐based grist, likely because of the high levels of silica in the retained husk layer of barley. Hops contain substantially more silicon than does grain, but quantitatively hops make a much smaller contribution than malt to the production of beer and therefore relatively less silicon in beer derives from them. During brewing the vast majority of the silicon remains with the spent grains; however, aggressive treatment during wort production in the brewhouse leads to increased extraction of silicon into wort and much of this survives into beer. CONCLUSION: It is confirmed that beer is a very rich source of silicon. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号