首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Unique macrostructures known as spun carbon‐nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room‐temperature conductivities of about 5 × 102 S cm?1. Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal–CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self‐fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu–CNT and Au–CNT composite yarns prepared by this method have metal‐like electrical conductivities (2–3 × 105 S cm?1) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30–50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications.  相似文献   

2.
Applications of carbon nanotubes (CNTs) in flexible and complementary metal‐oxide‐semiconductor (CMOS)‐based electronic and energy devices are impeded due to typically low CNT areal densities, growth temperatures that are incompatible with device substrates, and challenges in large‐area alignment and interconnection. A scalable method for continuous fabrication and transfer printing of dense horizontally aligned CNT (HA‐CNT) ribbon interconnects is presented. The process combines vertically aligned CNT (VA‐CNT) growth by thermal chemical vapor deposition, a novel mechanical rolling process to transform the VA‐CNTs to HA‐CNTs, and adhesion‐controlled transfer printing without needing a carrier film. The rolling force determines the HA‐CNT packing fraction and the HA‐CNTs are processed by conventional lithography. An electrical resistivity of 2 mΩ · cm is measured for ribbons having 800‐nm thickness, while the resistivity of copper is 100 times lower, a value that exceeds most CNT assemblies made to date, and significant improvements can be made in CNT structural quality. This rolling and printing process could be scaled to full wafer areas and more complex architectures such as continuous CNT sheets and multidirectional patterns could be achieved by straightforward design of the CNT growth process and/or multiple rolling and printing sequences.  相似文献   

3.
The main challenge for application of solution‐derived carbon nanotubes (CNTs) in high performance field‐effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution‐derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on‐state current Ion of 290 µA µm?1 (Vds = ?1.5 V and Vgs = ?2 V) and peak transconductance gm of 150 µS µm?1, which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT‐based electronics.  相似文献   

4.
Arrays of aligned carbon nanotubes (CNTs) have been proposed for different applications, including electrochemical energy storage and shock-absorbing materials. Understanding their mechanical response, in relation to their structural characteristics, is important for tailoring the synthesis method to the different operational conditions of the material. In this paper, we grow vertically aligned CNT arrays using a thermal chemical vapor deposition system, and we study the effects of precursor flow on the structural and mechanical properties of the CNT arrays. We show that the CNT growth process is inhomogeneous along the direction of the precursor flow, resulting in varying bulk density at different points on the growth substrate. We also study the effects of non-covalent functionalization of the CNTs after growth, using surfactant and nanoparticles, to vary the effective bulk density and structural arrangement of the arrays. We find that the stiffness and peak stress of the materials increase approximately linearly with increasing bulk density.  相似文献   

5.
Experimental demonstration of wafer-scale growth of well-aligned, dense, single-walled carbon nanotubes on 4" ST-cut quartz wafers is presented. We developed a new carbon nanotube (CNT) wafer-scale growth process. This process allows quartz wafers to be heated to the CNT growth temperature of 865degC through the alpha-beta phase transformation temperature of quartz (573degC) without wafer fracture. We also demonstrate wafer-scale CNT transfer to transfer these aligned CNTs from quartz wafers to silicon wafers. The CNT transfer process preserves CNT density and alignment. Carbon nanotube FETs fabricated using these transferred CNTs exhibit high yield. Wafer-scale growth and wafer-scale transfer of aligned CNTs enable carbon nanotube very large-scale integration circuits and their large-scale integration with silicon CMOS.  相似文献   

6.
The widespread potential application of vertically aligned carbon nanotube (CNT) forests have stimulated recent work on large‐area chemical vapor deposition growth methods, but improved control of the catalyst particles is needed to overcome limitations to the monodispersity and packing density of the CNTs. In particular, traditional thin‐film deposition methods are not ideal due to their vacuum requirements, and due to limitations in particle uniformity and density imposed by the thin‐film dewetting process. Here, a continuous‐feed convective self‐assembly process for manufacturing uniform mono‐ and multi‐layers of catalyst particles for CNT growth is presented. Particles are deposited from a solution of commercially available iron oxide nanoparticles, by pinning the meniscus between a blade edge and the substrate. The substrate is translated at constant velocity under the blade so the meniscus and contact angle remain fixed as the particles are deposited on the substrate. Based on design of the particle solution and tuning of the assembly parameters, a priori control of CNT diameter and packing density is demonstrated. Quantitative relationships are established between the catalyst size and density, and the CNT morphology and density. The roll‐to‐roll compatibility of this method, along with initial results achieved on copper foils, suggest promise for scale‐up of CNT forest manufacturing at commercially relevant throughput.  相似文献   

7.
Alignment or patterning of carbon nanotubes (CNTs) is particularly important for fabricating functional devices such as field emitters, nanophotonics, nanoelectronics, and ultrahydrophobic materials. This work briefly reviews recent progress on the synthesis of two‐dimensional CNT patterns, and then particularly concentrates on describing the pillar‐shaped fabrication and very interesting patterns of three‐dimensionally aligned CNTs formed by pyrolysis of iron(II ) phthalocyanine. The possible formation mechanism of the structures is discussed. The Figure shows the pillar‐shaped alignment of three‐dimensional CNTs.  相似文献   

8.
Carbon nanotubes (CNTs) are regarded as one of the most promising materials to manufacture high‐performance lithium batteries. This prospect is closely related to the construction of macroscopic architectures of CNTs. The superaligned CNT (SACNT) array is a unique kind of vertically aligned CNT array. Its highly oriented feature and strong intertube force facilitate the fabrication of macroscopic SACNT structures with various forms, including unidirectional films, buckypapers, and aerogels, etc. The as‐produced SACNT macroscopic architectures are successfully introduced into lithium batteries due to their outstanding electrical and mechanical properties. Herein, an overview of the functions of macroscopic SACNTs in lithium batteries is proposed, including their applications in composite electrodes, current collectors, interlayers, and flexible full cells.  相似文献   

9.
Shearing the carbon nanotubes (CNTs) to desired size or trimming the CNT tips conveniently is usually necessary for many applications. CNTs are normally believed possessing very high strength and toughness. In this paper we present a simple and novel method to actualize this process. In this method, aligned CNT arrays were embedded in paraffin matrix, and then the materials were carefully sliced up along the direction normal to the CNTs with a microtome. These slices consisted of vertically aligned CNTs with desired and uniform length. The experiments proved that there were enough interaction forces between the CNTs and the paraffin matrix to prevent the CNTs from being pulled out during the machining process. These sheared CNTs have shown better performance for thermal interface materials and field emission applications. This process may redound to unlocking the great potential of CNT applications.  相似文献   

10.
Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter >4 μm, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties.  相似文献   

11.
Wang D  Song P  Liu C  Wu W  Fan S 《Nanotechnology》2008,19(7):075609
Paper-like carbon nanotube (CNT) materials have many important applications such as in catalysts, in filtration, actuators, capacitor or battery electrodes, and so on. Up to now, the most popular way of preparing buckypapers has involved the procedures of dispersion and filtration of a suspension of CNTs. In this work, we present a simple and effective macroscopic manipulation of aligned CNT arrays called 'domino pushing' in the preparation of the aligned thick buckypapers with large areas. This simple method can efficiently ensure that most of the CNTs are well aligned tightly in the buckypaper. The initial measurements indicate that these buckypapers have better performance on thermal and electrical conductance. These buckypapers with controllable structure also have many potential applications, including supercapacitor electrodes.  相似文献   

12.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

13.
In ensuring the effective load transfer of carbon nanotubes (CNTs) reinforced copper (Cu)-based composites, good and stable interface contact is a key factor. Powder electrodeposition technology is used in the present study to coat silver (Ag) nanoparticles on CNTs for the first time. Subsequently, by ball milling and spark plasma sintering, uniform distribution of CNTs in the Cu matrix and tight Cu/C interface bonding are successfully achieved. It is found that Ag nanoparticles with a size of 5 nm are evenly embedded in the surface of CNTs. The results reveal that the agglomeration of CNTs is prevented by the addition of Ag nanoparticles and the adhesion between CNTs and Cu matrix is enhanced by the formation of coherent interface. Further, the load transfer of composite materials is effectively realized by the pinning effect of Ag particles on CNTs. The tensile strength, elongation, and conductivity of the 0.75 CNT-Ag/Cu samples were 314 MPa, 24.8%, and 93.6% IACS, respectively, which are 40.1%, 818%, and 3.3% higher than those of the CNT/Cu samples, respectively. The present method provides a new direction for the uniform coating powder materials and the synergistic strengthening of metal matrix composites.  相似文献   

14.
High‐throughput fabrication of microstructured surfaces with multi‐directional, re‐entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite‐element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain‐engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time‐ and geometry‐depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on “pixels” that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss‐like forms.  相似文献   

15.
Kim H  Kim KS  Kang J  Park YC  Chun KY  Boo JH  Kim YJ  Hong BH  Choi JB 《Nanotechnology》2011,22(9):095303
We demonstrated that the structural formation of vertically aligned carbon nanotube (CNT) forests is primarily affected by the geometry-related gas flow, leading to the change of growth directions during the chemical vapor deposition (CVD) process. By varying the growing time, flow rate, and direction of the carrier gas, the structures and the formation mechanisms of the vertically aligned CNT forests were carefully investigated. The growth directions of CNTs are found to be highly dependent on the nonlinear local gas flows induced by microchannels. The angle of growth significantly changes with increasing gas flows perpendicular to the microchannel, while the parallel gas flow shows almost no effect. A computational fluid dynamics (CFD) model was employed to explain the flow-dependent growth of CNT forests, revealing that the variation of the local pressure induced by microchannels is an important parameter determining the directionality of the CNT growth. We expect that the present method and analyses would provide useful information to control the micro- and macrostructures of vertically aligned CNTs for various structural/electrical applications.  相似文献   

16.
With the hydrothermal treatment, titanate nanostructure with distinctively different morphology and surface characteristics was successfully synthesized from commercial rutile titania powder dispersed in accommodating media which were deionized water or NaOH solution. Hybridized materials of titanate nanoparticles and carbon nanotubes (CNT) were also synthesized by the hydrothermal treatment process. Intrinsic interaction of titanate nanoparticles and CNTs could be confirmed by spectroscopic analysis. The synthesized titanate nanoparticle/CNT hybridized material was then employed for fabricating a working electrode of dye-sensitized solar cells (DSSC). Based on experimental results, DSSC fabricated from the hybridized titanate nanoparticles and carbon nanotubes could provide the highest photoconversion efficiency of approximately 3.92%.  相似文献   

17.
N Xiao  BJ Venton 《Analytical chemistry》2012,84(18):7816-7822
Carbon nanotube (CNT) modification of microelectrodes can result in increased sensitivity without compromising time response. However, dip coating CNTs is not very reproducible and the CNTs tend to lay flat on the electrode surface which limits access to the electroactive sites on the ends. In this study, aligned CNT forests were formed using a chemical self-assembly method, which resulted in more exposed CNT ends to the analyte. Shortened, carboxylic acid functionalized single-walled CNTs were assembled from a dimethylformamide (DMF) suspension onto a carbon-fiber disk microelectrode modified with a thin iron hydroxide-decorated Nafion film. The modified electrodes were highly sensitive, with 36-fold higher oxidation currents for dopamine using fast-scan cyclic voltammetry than bare electrodes and 34-fold more current than electrodes dipped in CNTs. The limit of detection (LOD) for dopamine was 17 ± 3 nM at a 10 Hz repetition rate and 65 ± 7 nM at 90 Hz. The LOD at 90 Hz was the same as a bare electrode at 10 Hz, allowing a 9-fold increase in temporal resolution without a decrease in sensitivity. Similar increases were observed for other cationic catecholamine neurotransmitters, and the increases in current were greater than for anionic interferents such as ascorbic acid and 3,4-dihydroxyphenylacetic acid (DOPAC). The CNT forest electrodes had high sensitivity at 90 Hz repetition rate when stimulated dopamine release was measured in Drosophila . The sensitivity, temporal resolution, and spatial resolution of these CNT forest modified disk electrodes facilitate enhanced electrochemical measurements of neurotransmitter release in vivo.  相似文献   

18.
Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.  相似文献   

19.
Turning insulating silk fibroin materials into conductive ones turns out to be the essential step toward achieving active silk flexible electronics. This work aims to acquire electrically conductive biocompatible fibers of regenerated Bombyx mori silk fibroin (SF) materials based on carbon nanotubes (CNTs) templated nucleation reconstruction of silk fibroin networks. The electronical conductivity of the reconstructed mesoscopic functional fibers can be tuned by the density of the incorporated CNTs. It follows that the hybrid fibers experience an abrupt increase in conductivity when exceeding the percolation threshold of CNTs >35 wt%, which leads to the highest conductivity of 638.9 S m?1 among organic‐carbon‐based hybrid fibers, and 8 times higher than the best available materials of the similar types. In addition, the silk‐CNT mesoscopic hybrid materials achieve some new functionalities, i.e., humidity‐responsive conductivity, which is attributed to the coupling of the humidity inducing cyclic contraction of SFs and the conductivity of CNTs. The silk‐CNT materials, as a type of biocompatible electronic functional fibrous material for pressure and electric response humidity sensing, are further fabricated into a smart facial mask to implement respiration condition monitoring for remote diagnosis and medication.  相似文献   

20.
Lu J  Yuan D  Liu J  Leng W  Kopley TE 《Nano letters》2008,8(10):3325-3329
We report a simple fabrication method of creating a three-dimensional single-walled carbon nanotube (CNT) architecture in which suspended CNTs are aligned parallel to each other along the conventionally unused third dimension at lithographically defined locations. Combining top-down lithography with the bottom-up block copolymer self-assembly technique and utilizing the excellent film forming capability of polymeric materials, highly uniform catalyst nanoparticles with an average size of 2.0 nm have been deposited on sidewalls for generating CNTs with 1 nm diameter. This three-dimensional platform is useful for fundamental studies as well as technological exploration. The fabrication method described herein is applicable for the synthesis of other very small 1D nanomaterials using the catalytic vapor deposition technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号