首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LM13 aluminium alloy (Al−Si12CulMg1) with titanium diboride (TiB2) and boron carbide (B4C) particulate hybrid composites have been prepared using stir casting process. Wt% of titanium diboride is varied from 0–10 and constant 5 wt% boron carbide particles have been used to reinforce LM13 aluminium alloy. Microstructure of the composites has been investigated and mechanical properties viz., hardness, the tensile strength of composites have been analyzed. Wear behavior of samples has been tested using a pin on disc apparatus under varying load (20 N–50 N) for a sliding distance of 2000 m. Fracture and wear on the surface of samples have been investigated. Microstructures of composites show uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt % of reinforcements. Dry sliding wear test results reveal that weight loss of composites increased with increasing load and sliding distance. Fracture on the surface of composites reveals that the initiation of crack is at the interface of the matrix and reinforcement whereas dimples are observed for LM13 aluminium alloy. Worn surface of composites shows fine grooves and delamination is observed for the matrix.  相似文献   

2.
Boron carbide (10 wt%) and fly ash (5 wt%) particles are reinforced in AA336 aluminium alloy by stir casting process. Microstructure of samples are investigated and dry sliding wear factors viz., load (10 N–50 N), sliding distance (500 m–2500 m) and sliding velocity (1 ms−1–5 ms−1) are considered. Response surface methodology is used to design the experiments and wear weight loss of samples is measured. Regression equation is developed to predict the weight loss. Analysis of variance, significance test and confirmation test are used to find the significant wear parameters which affects the weight loss and the wear factors are optimized for obtaining lowest weight loss. Microstructure of samples showed uniform dispersion of particles in AA336 aluminium alloy. Wear test results showed that weight loss increased with increasing load and sliding distance. However, weight loss of samples decreased with increasing sliding velocity. Optimum dry sliding wear factors are found to be a load of 18.1 N, sliding distance of 905.4 m with a sliding velocity of 4.18 ms−1.  相似文献   

3.
This paper describes the method of synthesizing cast aluminium alloy talc particulate composites and their mechanical and wear properties. Talc particles were characterized using X-ray diffraction, infrared spectroscopy and differential thermal analysis techniques. Composites with two Al-Si alloys (LM 13 and LM 6) as matrices were prepared by heating the molten alloys to 750° C and adding the preheated talc powder (–150 + 50 m size) after creating a vortex by mechanically stirring the melt. Simultaneous addition of 2 wt% Mg was found to facilitate the introduction and dispersion of talc particles in molten Al-Si alloys. Composites containing 2.8 wt % talc in LM 13 and 2 wt % talc in LM 6 have been prepared. Optical micrographs of composites revealed uniform distribution of talc particles. Hardness and tensile strength of LM 13+2.8% talc were 85 BHN and 126 MPa, respectively. After suitable heat treatment hardness and strength were increased to 125 BHN and 211 MPa respectively. Wear rates of LM 13+2.8 wt% talc and LM 6+2 wt % talc composites were found to be 22 to 30% less than the wear rates of corresponding base alloys without any dispersions.  相似文献   

4.
The coefficient of thermal expansion (CTE) of stir cast Al–Mg alloy A535 and its composites reinforced with a mixture of 5 wt.% fly ash and 5 wt.% silicon carbide, 10 wt.% and 15 wt.% fly ash particles was investigated using thermomechanical analysis (TMA). Micromechnical models proposed by Turner, Kerner and Schapery as well as the rule of mixture (ROM) were employed to compute the CTEs of the composites within the same temperature range. Experimental results showed that the CTE of A535 decreased with the addition of fly ash and SiC particles. Subjecting the test samples to a second re-heat cycle also affected their CTE response. The CTE obtained for A535 during the first heating cycle was higher than that obtained during the re-heat cycle whereas the reverse result was obtained for the fly ash composites. Furthermore, the analytical models could not predict the experimental CTEs the composites due to complexities arising from the presence of porosities, reaction products and other defects.  相似文献   

5.
The feasibility of incorporating fly ash cenospheres in die cast magnesium alloy has been demonstrated. The effects of fly ash cenosphere additions on the microstructure and some of the salient physical and mechanical properties of magnesium alloy (AZ91D) metal matrix composites were investigated. The control AZ91D alloy and associated composites, containing 5, 10, and 15 wt.% of fly ash cenospheres (added), were synthesized using a die casting technique. A microstructural comparison showed that microstructural refinement – occurred due to the fly ash additions and became more pronounced with an increase in the percentage of the fly ash added. The metal matrix areas nearer to the fly ash particles exhibited a greater degree of refinement than was observed in the areas further away from these particles. Both filled and unfilled fly ash cenospheres, and porosity were observed in the composite microstructures. The composite specimen densities decreased and the coefficient of thermal expansion did not change significantly as the volume percent of fly ash was increased within the range investigated. The hardness values of the composite specimens exhibited an increase in proportion to the increase in percentage of added fly ash. The tensile strength of the composites also increased as the concentration of fly ash cenospheres was increased. In contrast, the Young’s modulus of these composite samples, as measured by non-destructive pulse-echo method, decreased as the percentage of fly ash in the composite was increased. SEM micrographs of the tensile fracture surfaces showed broken cenospheres on the fracture surface and evidence of ‘pull outs’, where fly ash particles were previously embedded in the matrix. Compression testing results showed that the presence of 5 wt.% cenospheres decreased the compressive strength and compressive yield strength of the composite relative to that of the AZ91D matrix alloy. Surprisingly, a significant change in compression strength was not observed for the composites with 10 and 15 wt.% cenospheres in comparison to the AZ91D matrix alloy. In contrast to the tensile tests, no cenosphere remnants were observed on the compressive test fracture surface of the composites. This observation suggests that the fracture of the composite was initiated within the AZ91D matrix by normal void nucleation and growth, followed by crack propagation through the matrix, avoiding any of the cenospheres, leading to composite fracture of the matrix.  相似文献   

6.
Aluminum-based metal matrix composites (AMCs) play a vital role for potential applications in aerospace and automotive industries. This paper explores the experimental analysis of a composite with aluminum LM4 alloy as the matrix and tungsten carbide (WC) as the reinforcement material. The composite specimens were fabricated by the stir casting process. The reinforced ratios of 5, 10 and 15?wt.% of WC particulates were stirred in molten aluminum LM4 alloy (AALM4). Once the composite is solidified, the specimens are prepared to the required ASTM dimensions and tested for various mechanical properties such as tensile strength, impact strength and hardness. Moreover, the tribological behavior of the composite was studied using the pin-on-disc wear test apparatus. X-ray diffraction (XRD) analysis was conducted to analyze the various elements present in the composites. Finally, the scanning electron microscope (SEM) analysis reveals the uniform distribution of WC particles in Aluminum LM4 alloy matrix. The improvement in mechanical properties – hardness, impact strength and tensile strength – was achieved for the increase in the addition of wt.% of WC particles in the LM4 matrix. The decrease in mass loss was observed for the composite containing 15?wt.% of WC during the wear test among the various composites tested.  相似文献   

7.
Fly ash has gathered widespread attention as a potential reinforcement for aluminum matrix composites (AMCs) to enhance the properties and reduce the cost of production. Aluminum alloy AA6061 reinforced with various amounts (0, 4, 8 and 12 wt.%) of fly ash particles were prepared by compocasting method. Fly ash particles were incorporated into the semi solid aluminum melt. X-ray diffraction patterns of the prepared AMCs revealed the presence of fly ash particles without the formation of any other intermetallic compounds. The microstructures of the AMCs were analyzed using scanning electron microscopy. The AMCs were characterized with the homogeneous dispersion of fly ash particles having clear interface and good bonding to the aluminum matrix. The incorporation of fly ash particles improved the microhardness and ultimate tensile strength (UTS) of the AMCs.  相似文献   

8.
The microstructural and mechanical behavior of hybrid metal matrix composite based on aluminum alloy 6082-T6 reinforced with silicon carbide (SiC) and boron carbide (B4C) particles was investigated. For this purpose, the hybrid composites were fabricated using conventional stir casting process by varying weight percentages of 5, 10, 15, and 20?wt% of (SiC?+?B4C) mixture. Dispersion of the reinforced particles was studied with x-ray diffraction and scanning electron microscopy analyses. Mechanical properties such as micro-hardness, impact strength, ultimate tensile strength, percentage elongation, density, and porosity were investigated on hybrid composites at room temperature. The results revealed that the increase in weight percentage of (SiC?+?B4C) mixture gives superior hardness and tensile strength with slight decrease in percentage elongation. However, some reduction in both hardness and tensile strength was observed in hybrid composites with 20?wt% of (SiC?+?B4C) mixture. As compared to the un-reinforced alloy, the improvement in hardness and tensile strength for hybrid composites was found to be 10% and 21%, respectively. Reduction in impact strength and density with increase in porosity was also reported with the addition of reinforcement.  相似文献   

9.
A356 Al–fly ash particle composites were fabricated using stir-cast technique and hot extrusion. Composites containing 6 and 12 vol.% fly ash particles were processed. Narrow size range (53–106 μm) and wide size range (0.5–400 μm) fly ash particles were used. Hardness, tensile strength, compressive strength and damping characteristics of the unreinforced alloy and composites have been measured. Bulk hardness, matrix microhardness, 0.2% proof stress of A356 Al–fly ash composites are higher compared to that of the unreinforced alloy. Additions of fly ash lead to increase in hardness, elastic modulus and 0.2% proof stress. Composites reinforced with narrow size range fly ash particle exhibit superior mechanical properties compared to composites with wide size range particles. A356 Al–fly ash MMCs were found to exhibit improved damping capacity when compared to unreinforced alloy at ambient temperature.  相似文献   

10.
Aluminium alloy (AA) 6061 and 7075 were reinforced with 10 wt.% of boron carbide (B4C) and 5 wt.% of graphite through liquid casting technique. The Scanning Electron Microscope (SEM) and Energy Dispersive Spectrum (EDS) were used for the characterization of composites. The wear experiment was carried out by using a pin-on-disc apparatus with various input parameters like applied load (10, 20, and 30 N), sliding speed (0.6, 0.8, and 1.0 m/s) and sliding distance (1000, 1500, and 2000 m). Response Surface Methodology (RSM) using MINITAB 14 software was used to analyse the wear rate of hybrid composites and aluminium alloys. The worn surfaces of hybrid composites and base alloys were studied through SEM and EDS systems and some useful conclusions were made.  相似文献   

11.
The aim of present work was to study the effect of adding garnet and fly ash on the physical and mechanical performance of Al7075 hybrid composites. Al7075 hybrid composites reinforced with varying weight percentage (0 wt.%–15 wt.%) of each of garnet and fly ash were fabricated and characterized for the comparative assessment of their physical and mechanical properties. The physical and mechanical tests such as void content test, hardness test, tensile strength test, impact strength tests, flexural and fracture toughness test were performed for both garnet and fly ash reinforced composites. The finding of results indicated that the addition of 0 wt.%–15 wt.% of garnet increased the void content, hardness, flexural strength, tensile strength, impact strength and fracture toughness in the range of 1.01 %–2.69 %, 33 HRB–88 HRB, 165 MPa–275 MPa, 205 MPa–263 MPa, 12 J–22 J and 0.11 MPa ? m1/2–0.58 MPa ? m1/2 at crack length 0.1 respectively whereas addition of 0 wt.%–15 wt.% of fly ash increased the void content, hardness test, flexural strength, tensile strength, impact strength and fracture toughness in the range of 1.010 %–1.351 %, 33 HRB‐80 HRB, 165 MPa–225 MPa, 205 MPa–236 MPa, 12 J–20 J, 0.11 MPa ? m1/2–0.48 MPa ? m1/2 at crack length 0.1 respectively. Apart from the economic concern and void issue, Garnet indicated better choice of reinforcement as compared to fly ash in terms of mechanical properties.  相似文献   

12.
Phase composition of AZ61‐SiC composite with 5 wt.% of nanosized silicon carbide reinforcement was analysed and failure mechanism by in situ tensile test in scanning electron microscope was observed. Microstructure of the experimental materials was heterogeneous with grain size of 15 μm. Based on the quantitative analysis of composite, besides, silicon carbide strengthened particles added externally into the matrix magnesium silicide, magnesium oxide, and aluminium/manganese particles formed in situ were found in the matrix. In situ tensile test in scanning electron microscope has shown that reinforcing particles substantially influenced failure mechanism. Large, brittle magnesium silicide particles (size of 40 μm–50 μm) cracked during tensile deformation and at the same time, as a result of different physical properties, decohesion of the matrix and smaller aluminium/manganese, silicon carbide and magnesium oxide particles (size of 5 μm–10 μm, 10 μm and 50 nm respectively) occurred. Reinforcing particles and brittle secondary phases driven micro voids and their coalescence was found as a major cause of large cracks formation. Subsequently the increase of stress caused the cracks propagation by the coalescence of fractured particles and decohesively release smaller dispersed particles. The fracture propagated at approximately 90° angle to the direction of the tensile load direction. Fracture surface had feature of transcrystalline and intercrystalline failure.  相似文献   

13.
In this study, zinc?aluminum alloy (ZA-27) matrix composites reinforced by different weight fractions of fly ash or alumina (Al2O3) were produced using the traditional stir casting technique. The corrosion behaviors of both unreinforced alloy and reinforced composites were examined using direct current polarization (DCP) test in a simulated sea solution (3.5 wt.% NaCl). Scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) were used to examine the morphology of the composites’ surface before and after corrosion tests. The results of corrosion revealed that reinforcing ZA-27 alloy by fly ash or Al2O3 particles decreases its tendency to uniform corrosion due to the formation of weak microgalvanic couple between matrix and reinforcement particles. The fly ash and alumina (Al2O3) particles have protected the matrix material from pits formation at early stage of polarization. However, once these pits are formed, they grow faster. Positive hysteresis of the polarization curves implies that the salt layer breakdown and matrix dissolution overshadow surface passivation during the reverse scan. The electrochemical results are consistent with the pits’ morphology of the corroded composite. Composites with fly ash reinforcements have autocatalytic pits, whereas composites with alumina (Al2O3) reinforcements have shallow pits.  相似文献   

14.
ABSTRACT

This work assesses the impact of the presence of Nano scaled silicon carbide on the Mechanical & Tribological behavior of aluminium matrix composites. Aluminium matrix composites containing 0, 0.5, 1, 1.5, 2 and 2.5 wt.%-nano scaled silicon carbide was set up by a mechanical stirrer. The trial comes about to demonstrate that the inclusion of Nano silicon carbide brings about materials with progressively high elastic modulus and likewise brings about expanded brittle behavior, fundamentally lessening failure strain. Shear modulus and flexural shear modulus likewise increases with silicon carbide increase. The presence of Nano scaled silicon carbide in the aluminium matrix diminishes subsurface fatigue wear and increases wear resistance, because of silicon carbide lubricant activity. Wear testing, microstructure & morphological, density & void testing, hardness, flexural and tensile test of the readied composites were investigated and outcomes were analyzed which demonstrated that including nano-SiC in aluminum (Al) matrix increased wear resistance, tensile strength, and 2 wt. % of nano scaled SiC for Al MMC indicated maximum wear resistance, tensile strength, and an optimum balanced mix of both Tribological and Mechanical properties. Microstructural observation uncovered uniformand homogeneous distribution of SiC particles in the Al matrix.  相似文献   

15.
In the past years studies were conducted on natural fibre reinforced polymer composites to observe their mechanical properties in order to decide their industrial applications. These composites have already been used in many applications from aerospace to sporting equipment. These green composites can be used as a replacement for synthetic composites. This is because the natural fibres are eco-friendly, biodegradable, renewable, etc. In this work, an attempt is made to reinforce fly ash, coir fibre and sugarcane fibre with epoxy polymer matrix. Central composite design under response surface methodology (RSM), one of the approaches of design of experiments (DOE) is used to determine optimum sample preparation conditions of fly ash, coir fibre and sugarcane fibre. Both tensile and flexural (three-point bending) tests are conducted on these fabricated composites to determine their materialistic characteristics. Analysis of variance (ANOVA) is carried out using Minitab software to find the influence of fly ash, coir fibre, sugarcane fibre on composites. Regression equations obtained from analysis of variance is used to calculate values. Experimental and calculated values are compared and their error % are calculated and tabulated. Response surface optimization study is carried to find the optimized parameters of composites. It is observed that, increase in wt.% of coir fibre and decrease in wt.% of fly ash and sugarcane fibre, increases yield stress and these parameters have mixed impact on ultimate tensile stress. The addition of fly ash, coir fibre and sugarcane fibre in low percentages increases Young's modulus. Increase in wt.% of fly ash and coir fibre and decrease in wt.% of sugarcane, increases flexural modulus and flexural stress.  相似文献   

16.
ABSTRACT

This study presents an effective approach to assess the machinability of 6351 aluminum alloy matrix, reinforced with 5 wt.% silicon carbide (SiC) and (0, 5, and 10 wt.%) boron carbide (B4C) particles. The turning tests are carried out with a polycrystalline diamond (PCD) tool to identify the effect of the B4C particles addition to the composite, with an objective to improve the material removal rate (MRR) and to reduce the surface roughness (Ra) and power consumption (P). The significant level of each factor, which contributes to affect the output response, is found through analysis of variance (ANOVA). The results show that the inclusion of B4C particles in the hybrid composite significantly affects the machinability, with a contribution to the surface roughness by 7.87% and P by 6.36%. The increase in MRR affects the quality of the material, irrespective of the composites.  相似文献   

17.
Abstract

Wear behaviour was investigated for high volume fraction SiC particulate reinforced aluminum alloy composites by considering the shear stress acting on the specimen and the wear debris formed during sliding wear. The SEM morphology of worn subsurfaces showed that particles are fragmented, mechanically mixed, and then aligned in the wear direction caused by normal and tangential stresses. Wear debris were initially tiny lumps but finally delaminated due to the shear stress. A theoretical wear model was proposed for plastically deformable specimens worn by a rigid non-deformable steel ring by analysing the interspacing of SiC particles and the tangential stress applied to the worn surface. Predictions of this theoretical wear model were in good agreement with experimental results.  相似文献   

18.
Fatigue crack propagation (FCP) and fracture mechanisms have been studied for two orientations in powder metallurgy 2024 aluminium alloy matrix composites reinforced with three different sizes of silicon carbide particles. Particular attention has been paid to make a better understanding for the mechanistic role of particle size. The FCP rates of the composites decreased with increasing particle size regardless of orientation and were slightly faster in the FCP direction parallel to the extrusion direction. After allowing for crack closure, the differences in FCP rate among the composites and between two orientations were significantly diminished, but the composites showed lower FCP rates than the corresponding unreinforced alloy. Fracture surface roughness was found to be more remarkable with increasing particle size and in the FCP direction perpendicular to the extrusion direction. Taking into account the difference in the modulus of elasticity in addition to crack closure, the differences in FCP rate between the unreinforced alloy and the composites were almost eliminated.  相似文献   

19.
In this experimental study, aluminium (Al)-based graphite (Gr) and silicon carbide (SiC) particle-reinforced, self-lubricating hybrid composite materials were manufactured by powder metallurgy. The tribological and mechanical properties of these composite materials were investigated under dry sliding conditions. The results of the tests revealed that the SiC-reinforced hybrid composites exhibited a lower wear loss compared to the unreinforced alloy and Al–Gr composites. It was found that with an increase in the SiC content, the wear resistance increased monotonically with hardness. The hybridisation of the two reinforcements also improved the wear resistance of the composites, especially under high sliding speeds. Additionally, the wear loss of the hybrid composites decreased with increasing applied load and sliding distance, and a low friction coefficient and low wear loss were achieved at high sliding speeds. The composite with 5 wt.% Gr and 20 wt.% SiC showed the greatest improvement in tribological performance. The wear mechanism was studied through worn surface and wear debris analysis as well as microscopic examination of the wear tracks. This study revealed that the addition of both a hard reinforcement (e.g., SiC) and soft reinforcement (e.g., graphite) significantly improves the wear resistance of aluminium composites. On the whole, these results indicate that the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors.  相似文献   

20.
Copper coated steel fibers reinforced LM13 aluminum alloy composites have been prepared using stir casting process. Experiments have been designed using response surface methodology (RSM) by varying wt % of reinforcement (0–10), stirrer speed (350 min−1–800 min−1) and pouring temperature (700 °C–800 °C). Microstructure and hardness of composites have been investigated. Analysis of variance, significance test and confirmation tests have been performed and regressions model has been developed to predict the hardness of composites. Response surface plots reveal that hardness of composites increases with increasing wt % of reinforcement and stirrer speed. The optimum stir cast process parameters for obtaining higher hardness are found to be the wt % of reinforcement of 8.2, pouring temperature of 748 °C and stirrer speed of 708 min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号