首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High‐throughput fabrication of microstructured surfaces with multi‐directional, re‐entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite‐element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain‐engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time‐ and geometry‐depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on “pixels” that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss‐like forms.  相似文献   

3.
定向碳纳米管阵列在石英玻璃基底上的模板化生长研究   总被引:5,自引:0,他引:5  
分别以带有刻痕的石英玻璃和溅射过Au膜的石英玻璃为生长基底,通过催化裂解二茂铁和二甲苯混合物的方法,在基底上制备出了模板化的定向碳纳米管(CNT)阵列,扫描电镜(SEM)和透射电镜(TEM)观察表明:在这两种基底上生长的定向碳纳米管阵列的模板化程度都很高,其中的碳纳米管多为直径在20~50nm的多壁管(MWNT),且具有很好的定向性。本文还分析、对比了基底材料对定向碳纳米管生长的影响,初步探讨了定向碳纳米管模板化生长的形成机制。  相似文献   

4.
垂直定向碳纳米管独特的结构和性能使其成为碳纳米管领域的研究热点,而可控制备是其重点研究方向之一。概述了近年来垂直定向碳纳米管的常用制备方法(热化学气相沉积和等离子体增强化学气相沉积)及其影响因素,以及垂直定向碳纳米管在热界面、光电、场发射和传感器方面的研究进展,重点介绍了一些具有优异性能的研究领域以及存在的问题。  相似文献   

5.
碳源流量对碳纳米管厚膜形貌和结构的影响   总被引:1,自引:0,他引:1  
采用低压化学气相沉?积(LPCVD)在镍片上制备了厚度在400~1000μm范围的碳纳米管(CNTs)薄膜, 研究了碳源(乙炔)流量对碳纳米管薄膜形貌 和结构的影响. 随乙炔流量的增加, 碳纳米管薄膜厚度和产量增大. 电子显微镜和拉曼光谱研究结果表?明, 在乙炔流量为10sccm下制备的碳纳 米管直径分布范围最小(10~100nm), 石墨化程度最高, 缺陷密度最小, 晶形最完整. 随着乙炔流量的增大(30~90sccm), 碳纳米管的直径分布 范围增大(10~300nm), 石墨化程度降低, 缺陷密度增大, 非晶化程度增加. 因此, 通过碳源流量可以控制碳纳米管薄膜的形貌和结构.  相似文献   

6.
The optical absorption efficiencies of vertically aligned multi‐walled (MW)‐carbon nanotube (CNT) ensembles are characterized in the 350?7000 nm wavelength range where CNT site densities > 1 × 1011/cm2 are achieved directly on metallic substrates. The site density directly impacts the optical absorption characteristics, and while high‐density arrays of CNTs on electrically insulating and non‐metallic substrates have been commonly reported, achieving high site‐densities on metals has been challenging and remains an area of active research. These absorber ensembles are ultra‐thin (<10 μm) and yet they still exhibit a reflectance as low as ~0.02%, which is 100 times lower than the reference; these characteristics make them potentially attractive for high‐sensitivity and high‐speed thermal detectors. In addition, the use of a plasma‐enhanced chemical vapor deposition process for the synthesis of the absorbers increases the portfolio of materials that can be integrated with such absorbers due to the potential for reduced synthesis temperatures. The remarkable ruggedness of the absorbers is also demonstrated as they are exposed to high temperatures in an oxidizing ambient environment, making them well‐suited for extreme thermal environments encountered in the field, potentially for solar cell applications. Finally, a phenomenological model enables the determinatiom of the extinction coefficients in these nanostructures and the results compare well with experiment.  相似文献   

7.
8.
9.
脉冲真空弧源沉积类金刚石薄膜耐磨特性研究   总被引:1,自引:1,他引:1  
本文利用脉冲真空弧源沉积技术在Cr17Ni14Cu4不锈钢和Si(100)基体上制备了类金刚石(DLC)薄膜,研究在不同基体偏压下,DLC薄膜的结构与性能.采用拉曼光谱和X射线光电子能谱(XPS)研究DLC薄膜的原子结合状态,利用CSEM销盘摩擦磨损试验机研究其耐磨性,利用HXD1000B显微硬度仪测试其显微硬度,并采用压痕法评价其结合力.研究结果表明:DLC薄膜与基体结合牢固.随着基体偏压的提高,DLC薄膜内sp3键含量增大,薄膜硬度提高.Cr17Ni14Cu4不锈钢表面沉积DLC薄膜后,耐磨性大幅度提高,本文探讨了DLC薄膜的耐磨机理.  相似文献   

10.
利用热丝化学气相沉积法 (HF CVD)进行了金刚石薄膜制备和碳纳米管形核作用的研究。获得了制备金刚石薄膜的优化工艺参数。利用碳纳米管作为形核前驱获得了高质量的金刚石薄膜 ,其沉积速率可达 2 5 μm/h ,晶粒生长完美 ,而且没有出现聚晶现象。研究了碳纳米管涂料质量对薄膜沉积特性的影响 ,并对其机理进行了初步探讨  相似文献   

11.
12.
A continuous and wide range control of the diameter (1.9?3.2 nm) and density (0.03?0.11 g cm?3) of single‐walled carbon nanotube (SWNT) forests is demonstrated by decoupling the catalyst formation and SWNT growth processes. Specifically, by managing the catalyst formation temperature and H2 exposure, the redistribution of the Fe catalyst thin film into nanoparticles is controlled while a fixed growth condition preserved the growth yield. The diameter and density are inversely correlated, where low/high density forests would consist of large/small diameter SWNTs, which is proposed as a general rule for the structural control of SWNT forests. The catalyst formation process is modeled by considering the competing processes, Ostwald ripening, and subsurface diffusion, where the dominant mechanism is found to be Ostwald ripening. Specifically, H2 exposure increases catalyst surface energy and decreases diameter, while increased temperature leads to increased diffusion on the surface and an increase in diameter.  相似文献   

13.
14.
Unprecedented levels of internal order are obtained in multiwalled carbon nanotubes grown by chemical vapor deposition with a nitrogen‐doping level of 3% in work reported by Windle and co‐workers on p. 760. Not only is each of the tubular layers of the same orientation (chirality), but they also appear to be in three‐dimensional crystallographic register with one another as shown by the hkl reflections on the cover. The tubes are also straighter and thicker than pure carbon equivalents. The layers are either pure zigzag or pure armchair with spacings close to that of graphite.  相似文献   

15.
16.
系统分析了利用超高真空CVD技术在Si衬底上外延Si1-xGex 合金的体内组分分布情况和Ge的表面偏析现象。用SIMS对Si和Ge的组分作了深度剖析。在生长过程中 ,组分均匀 ,在表面Ge浓度减小 ,Si浓度没有明显变化。在不经HF酸清洗和在HF酸中去掉表面自然氧化层的两种情况下 ,用XPS分别对外延层表面进行了定量分析 ,得到Ge的表面偏析与表面自然氧化相关的结论  相似文献   

17.
Fiber‐shaped supercapacitors with improved specific capacitance and high rate capability are a promising candidate as power supply for smart textiles. However, the synergistic interaction between conductive filaments and active nanomaterials remains a crucial challenge, especially when hydrothermal or electrochemical deposition is used to produce a core (fiber)–shell (active materials) fibrous structure. On the other hand, although 2D pseudocapacitive materials, e.g., Ti3C2T x (MXene), have demonstrated high volumetric capacitance, high electrical conductivity, and hydrophilic characteristics, MXene‐based electrodes normally suffer from poor rate capability owing to the sheet restacking especially when the loading level is high and solid‐state gel is used as electrolyte. Herein, by hosting MXene nanosheets (Ti3C2T x ) in the corridor of a scrolled carbon nanotube (CNT) scaffold, a MXene/CNT fiber with helical structure is successfully fabricated. These features offer open spaces for rapid ion diffusion and guarantee fast electron transport. The solid‐state supercapacitor based on such hybrid fibers with gel electrolyte coating exhibits a volumetric capacitance of 22.7 F cm−3 at 0.1 A cm−3 with capacitance retention of 84% at current density of 1.0 A cm−3 (19.1 F cm−3), improved volumetric energy density of 2.55 mWh cm−3 at the power density of 45.9 mW cm−3, and excellent mechanical robustness.  相似文献   

18.
The synthesis of Bernal‐stacked multilayer graphene over large areas is intensively investigated due to the value of this material's tunable electronic structure, which makes it promising for use in a wide range of optoelectronic applications. Multilayer graphene is typically formed via chemical vapor deposition onto a metal catalyst, such as Ni, a Cu–Ni alloy, or a Cu pocket. These methods, however, require sophisticated control over the process parameters, which limits the process reproducibility and reliability. Here, a new synthetic method for the facile growth of large‐area Bernal‐stacked multilayer graphene with precise layer control is proposed. A thin Ni film is deposited onto the back side of a Cu foil to induce controlled diffusion of carbon atoms through bulk Cu from the back to the front. The resulting multilayer graphene exhibits a 97% uniformity and a sheet resistance of 50 Ω sq?1 with a 90% transmittance after doping. The growth mechanism is elucidated and a generalized kinetic model is developed to describe Bernal‐stacked multilayer graphene growth by the carbon atoms diffused through bulk Cu.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号