首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO2 sensor based on 6,13‐bis(triisopropylsilylethynyl)­pentacene (TIPS‐petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors.  相似文献   

2.
Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self‐powered inorganic halides perovskite for chemical gas sensing at room temperature under visible‐light irradiation is presented. These devices consist of porous network of CsPbBr3 (CPB) and can generate an open‐circuit voltage of 0.87 V under visible‐light irradiation, which can be used to detect various concentrations of O2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB‐based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine.  相似文献   

3.
Upcoming emission regulations order highly effective NOx‐reduction systems in lean‐burn engines requiring new catalytic materials and integrated control of the reduction process. Thus, new approaches for NOx‐reduction and its monitoring over an On‐Board‐Diagnostic (OBD) system are suggested throughout the globe. A promising attempt is the development of a catalytic system having an integrated NOx‐sensor, based on selective catalytic reduction process and impedance sensors. The study displays the results achieved both with a perovskite type of self‐regenerative catalyst functioning by H2‐reductant and with impedance NOx‐sensors. The catalysts were tested at the temperature range of 150 °C to 360 °C yielding NOx conversion rates of 92 % with high selectivity to N2. Impedance sensors having NiCr2O4‐ and NiO‐SE and PYSZ‐ and FYSZ‐electrolytes are developed and tested at 600 °C under lean atmosphere (5 vol. % O2). Better sensing behaviour towards NO and lower cross‐selectivity towards O2, CO, CO2 and CH4 have been observed with sensors having NiO‐SE.  相似文献   

4.
A new type of nitrogen dioxide (NO2) gas sensor based on copper phthalocyanine (CuPc) thin film transistors (TFTs) with a simple, low‐cost UV–ozone (UVO)‐treated polymeric gate dielectric is reported here. The NO2 sensitivity of these TFTs with the dielectric surface UVO treatment is ≈400× greater for [NO2] = 30 ppm than for those without UVO treatment. Importantly, the sensitivity is ≈50× greater for [NO2] = 1 ppm with the UVO‐treated TFTs, and a limit of detection of ≈400 ppb is achieved with this sensing platform. The morphology, microstructure, and chemical composition of the gate dielectric and CuPc films are analyzed by atomic force microscopy, grazing incident X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, revealing that the enhanced sensing performance originates from UVO‐derived hydroxylated species on the dielectric surface and not from chemical reactions between NO2 and the dielectric/semiconductor components. This work demonstrates that dielectric/semiconductor interface engineering is essential for readily manufacturable high‐performance TFT‐based gas sensors.  相似文献   

5.
2D layered materials with sensitive surfaces are promising materials for use in chemical sensing devices, owing to their extremely large surface‐to‐volume ratios. However, most chemical sensors based on 2D materials are used in the form of laterally defined active channels, in which the active area is limited to the actual device dimensions. Therefore, a novel approach for fabricating self‐formed active‐channel devices is proposed based on 2D semiconductor materials with very large surface areas, and their potential gas sensing ability is examined. First, the vertical growth phenomenon of SnS2 nanocrystals is investigated with large surface area via metal‐assisted growth using prepatterned metal electrodes, and then self‐formed active‐channel devices are suggested without additional pattering through the selective synthesis of SnS2 nanosheets on prepatterned metal electrodes. The self‐formed active‐channel device exhibits extremely high response values (>2000% at 10 ppm) for NO2 along with excellent NO2 selectivity. Moreover, the NO2 gas response of the gas sensing device with vertically self‐formed SnS2 nanosheets is more than two orders of magnitude higher than that of a similar exfoliated SnS2‐based device. These results indicate that the facile device fabrication method would be applicable to various systems in which surface area plays an important role.  相似文献   

6.
Nitrogen dioxide (NO2) emission has severe impact on human health and the ecological environment and effective monitoring of NO2 requires the detection limit (limit of detection) of several parts‐per‐billion (ppb). All organic semiconductor‐based NO2 sensors fail to reach such a level. In this work, using an ion‐in‐conjugation inspired‐polymer (poly(3,3′‐diaminobenzidine‐squarine, noted as PDBS) as the sensory material, NO2 can be detected as low as 1 ppb, which is the lowest among all reported organic NO2 sensors. In addition, the sensor has high sensitivity, good reversibility, and long‐time stability with a period longer than 120 d. Theoretical calculations reveal that PDBS offers unreacted amine and zwitterionic groups, which can offer both the H‐bonding and ion‐dipole interaction to NO2. The moderate binding energies (≈0.6 eV) offer high sensitivity, selectivity as well as good reversibility. The results demonstrate that the ion‐in‐conjugation can be employed to greatly improve sensitivity and selectivity in organic gas sensors by inducing both H‐bonding and ion‐dipole attraction.  相似文献   

7.
A uniform WO3 nanowire structure was prepared by two-step thermal oxidation method on Si substrate. WO3 nanowires show different morphology and crystal structures after annealing at different temperatures. The influence of annealing temperature on WO3 nanowires was investigated by SEM, TEM and XRD. Higher crystallization property and lower surface state was obtained with higher annealing temperature. The gas sensing properties of the WO3 nanowires with various annealing temperatures to NO2 with the concentration ranging from 1 to 4 ppm were examined at different temperatures ranging from room temperature to 200 °C. The results indicate that WO3 nanowires can greatly lower the working temperature of sensors and sensors based on WO3 nanowires show p-type or n-type sensing behaviors depending on annealing temperatures. Possible sensing mechanism of p-type WO3 nanowires and the influence of annealing temperature on sensing types was explained. This work might supply new ideas about gas sensing mechanisms and open a new way to develop p-type WO3 sensing materials.  相似文献   

8.
Porous silicon nanowires (PSiNWs) array is a promising material for development of integrated gas sensors operating at room temperature. This work reports the fabrication of PSiNWs assembly with different structural features and its effect on gas‐sensing performance. Bundling and well separating PSiNWs arrays are fabricated by MACE method, respectively, based on the effective modulation of surface wettability of the initial Si substrate. The HF pretreatment creates a hydrophobic surface favorable for deposition of irregular Ag nanoflakes and then for the formation of bundling PSiNWs array. In contrast, the PSiNWs with well lateral separation are formed based on the predeposited uniform Ag nanoparticles on a hydrophilic Si surface. The PSiNWs array featured by tip‐clusters is proved to be highly effective in achieving highly sensitive and rapid response to NO2 gas at room temperature. Satisfying dynamic characteristic and selectivity are meanwhile observed for the bundling array. The formation of the bundling or separating of PSiNWs is discussed in terms of the force balance of individual nanowire, which is further correlated with non‐uniform distribution of Ag nanoclusters caused by H‐termination. Meanwhile, high sensing performance of bundling nanowires is analyzed based on the structural promotion of the unique configuration of tip‐cluster to sensing response.
  相似文献   

9.
The unique properties of MoS2 nanosheets make them a promising candidate for high‐performance room temperature sensing. However, the properties of pristine MoS2 nanosheets are strongly influenced by the significant adsorption of oxygen in an air environment, which leads to instability of the MoS2 sensing device, and all sensing results on MoS2 reported to date were exclusively obtained in an inert atmosphere. This significantly limits the practical sensor application of MoS2 in an air environment. Herein, a novel nanohybrid of SnO2 nanocrystal (NC)‐decorated crumpled MoS2 nanosheet (MoS2/SnO2) and its exciting air‐stable property for room temperature sensing of NO2 are reported. Interestingly, the SnO2 NCs serve as strong p‐type dopants for MoS2, leading to p‐type channels in the MoS2 nanosheets. The SnO2 NCs also significantly enhance the stability of MoS2 nanosheets in dry air. As a result, unlike other MoS2 sensors operated in an inert gas (e.g. N2), the nanohybrids exhibit high sensitivity, excellent selectivity, and repeatability to NO2 under a practical dry air environment. This work suggests that NC decoration significantly tunes the properties of MoS2 nanosheets for various applications.  相似文献   

10.
Ultralow power chemical sensing is essential toward realizing the Internet of Things. However, electrically driven sensors must consume power to generate an electrical readout. Here, a different class of self‐powered chemical sensing platform based on unconventional photovoltaic heterojunctions consisting of a top graphene (Gr) layer in contact with underlying photoactive semiconductors including bulk silicon and layered transition metal dichalcogenides is proposed. Owing to the chemically tunable electrochemical potential of Gr, the built‐in potential at the junction is effectively modulated by absorbed gas molecules in a predictable manner depending on their redox characteristics. Such ability distinctive from bulk photovoltaic counterparts enables photovoltaic‐driven chemical sensing without electric power consumption. Furthermore, it is demonstrated that the hydrogen (H2) sensing properties are independent of the light intensity, but sensitive to the gas concentration down to the 1 ppm level at room temperature. These results present an innovative strategy to realize extremely energy‐efficient sensors, providing an important advancement for future ubiquitous sensing.  相似文献   

11.
For the first time nitrogen or boron doped carbon nanotubes were added into a SnO2 matrix to develop a new hybrid CNTs/SnO2 gas sensors. The hybrid sensor is utilised to detect low ppb concentrations of NO2 in air, by measuring resistance changes of thin CNTs/SnO2 films. The tests are performed at room temperature. For comparison, pure SnO2 and N or B-substituted CNT sensors are also examined. Comparative gas sensing results reveal that the CNTs/SnO2 hybrid sensors exhibit much higher response towards NO2, at least by a factor of 10, and good baseline recovery properties at room temperature than the blank SnO2 and the N or B-substituted CNT sensors. This finding shows that doping SnO2 with low quantity of CNTs doped with heteroatoms can dramatically improve sensitivity.  相似文献   

12.
The humidity dependence of the gas sensing characteristics of metal oxide semiconductors has been one of the greatest obstacles for gas sensor applications during the last five decades because ambient humidity dynamically changes with the environmental conditions. Herein, a new and novel strategy is reported to eliminate the humidity dependence of the gas sensing characteristics of oxide chemiresistors via dynamic self‐refreshing of the sensing surface affected by water vapor chemisorption. The sensor resistance and gas response of pure In2O3 hollow spheres significantly change and deteriorate in humid atmospheres. In contrast, the humidity dependence becomes negligible when an optimal concentration of CeO2 nanoclusters is uniformly loaded onto In2O3 hollow spheres via layer‐by‐layer (LBL) assembly. Moreover, In2O3 sensors LBL‐coated with CeO2 nanoclusters show fast response/recovery, low detection limit (500 ppb), and high selectivity to acetone even in highly humid conditions (relative humidity 80%). The mechanism underlying the dynamic refreshing of the In2O3 sensing surfaces regardless of humidity variation is investigated in relation to the role of CeO2 and the chemical interaction among CeO2, In2O3, and water vapor. This strategy can be widely used to design high performance gas sensors including disease diagnosis via breath analysis and pollutant monitoring.  相似文献   

13.
Large‐area and uniform three‐dimensional (3D) β‐Ni(OH)2 and NiO nanowalls were synthesized on a variety of rigid and flexible substrates via a simple aqueous chemical deposition process. The β‐Ni(OH)2 nanowalls consist of single‐crystal Ni(OH)2 nanosheets that were vertically grown on different substrates. The height, crystallinity, and morphology of the Ni(OH)2 nanowalls can be readily modified by adjusting the reaction time and concentration of the NiCl2 solution. The synthesis mechanism of the Ni(OH)2 nanowalls was determined through heterogeneous nucleation and subsequent oriented crystal growth. 3D NiO nanowalls were obtained by thermal decomposition of the Ni(OH)2 nanowalls at 400 °C in Ar atmosphere. Highly sensitive, selective gas sensors and electrochemical sensors based on these NiO nanowalls were developed. The chemiresistive gas sensors based on the NiO nanowalls grown on ceramic substrates exhibited an excellent performance with low detection limit for formaldehyde (8 ppb) and NO2 (15 ppb). The electrochemical sensor based on the NiO nanowalls grown on an FTO glass substrate had a superior selectivity to non‐enzymatic glucose with a detection limit of 200 nm .  相似文献   

14.
Temperature and/or composition mapping inside high temperature energy conversion and storage devices are challenging, yet of critical importance to improve the material design for optimum performance. Here, the great potential of TiO2 nanoparticle (NP)‐decorated graphite nanoplatelet (GNP) nanocomposites as high temperature thermal senors or gas sensors is reported. Effects of the GNP substrate on phonon confinement in Raman spectrum, grain growth, and phase stability of anatase TiO2 NPs at high temperatures are systematically studied. Thermally sensitive Raman signatures, indicating the ultrafast grain growth of TiO2 NPs in response to short thermal shock treatments (0.1–25 s) at high temperatures, are exploited for high temperature thermal sensing applications. A very high accuracy of nearly 98% in temperature measurements is demonstrated for a given short‐time thermal exposure. Thermal stability of anatase TiO2 NPs against transformation into the rutile phase in TiO2‐GNP nancomposites is substantially increased by controlling the surface area of the substrate, which would significantly improve the performance of TiO2‐based high temperature gas sensors.  相似文献   

15.
Metal–organic framework (MOF)–polymer mixed‐matrix membranes (MMMs) have shown great potential and superior performance in gas separations. However, their sensing application has not been fully established yet. Herein, a rare example of using flexible MOF‐based MMMs as a fluorescent turn‐on sensor for the detection of hydrogen sulfide (H2S) is reported. These MOF‐based MMMs are readily prepared by mixing a highly stable aluminum‐based nano‐MOF (Al‐MIL‐53‐NO2) into poly(vinylidene fluoride) with high loadings up to 70%. Unlike the intrinsic fragility and poor processability of pure‐MOF membranes, these MMMs exhibit desirable flexibility and processability that are more suitable for practical sensing applications. The uniform distribution of Al‐MIL‐53‐NO2 particles combined with the permanent pores of MOFs enable these MMMs to show good water permeation flux and consequently have a full contact between the analyte and MOFs. The developed MMM sensor (70% MOF loading) thus shows a highly remarkable detection selectivity and sensitivity for H2S with an exceptionally low detection limit around 92.31 × 10?9m , three orders of magnitude lower than the reported powder‐form MOFs. This work demonstrates that it is feasible to develop flexible luminescent MOF‐based MMMs as a novel platform for chemical sensing applications.  相似文献   

16.
MOS gas sensor arrays based on MEMS gas sensor platforms were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx) and ammonia (NH3), and their gas sensing characteristics in binary mixed-gas system were investigated. Three gas sensing materials with nano-sized particles for these target gases, Pd–SnO2 for CO, In2O3 for NOx and Ru–WO3 for NH3 were synthesized using a sol–gel method. All the sensors showed good properties for their target gases at the optimum points for micro-heater operation. From the experimental data in MEMS gas sensor arrays in a binary mixed system, the gas sensing behavior and sensor response in mixed gas systems were scrutinized. The gas sensing behaviors to the mixed gas systems suggested that specific adsorption and selective activation of adsorption sites might occur in gas mixtures and offer the priority for the adsorption of specific gas. Thorough analysis of the sensing performance of the sensor arrays will make it possible to discriminate the components in gas mixtures as well as their concentrations.  相似文献   

17.
Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide. Annealing at high temperatures, or exposure to strong ultraviolet light under vacuum, is employed to facilitate desorption of these gases. In this article, the molecules adsorbed on graphene nanoflakes and on chemically derived graphene‐nanomesh flakes are displaced rapidly at room temperature in air by the use of gaseous polar molecules such as water and ethanol. The mechanism for desorption is proposed to arise from the electrostatic forces exerted by the polar molecules, which decouples the overlap between substrate defect states, molecule states, and graphene states near the Fermi level. Using chemiresistors prepared from water‐based dispersions of single‐layer graphene on mesoporous alumina membranes, the study further shows that the edges of the graphene flakes (showing p‐type responses to NO2 and NH3) and the edges of graphene nanomesh structures (showing n‐type responses to NO2 and NH3) have enhanced sensitivity. The measured responses towards gases are comparable to or better than those which have been obtained using devices that are more sophisticated. The higher sensitivity and rapid regeneration of the sensor at room temperature provides a clear advancement towards practical molecule detection using graphene‐based materials.  相似文献   

18.
Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high‐performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high‐temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room‐temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room‐temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure–property correlations. Finally, some future research perspectives and new challenges that the field of room‐temperature sensors will have to address are also discussed.  相似文献   

19.
WO3 thin films having different effective surface areas were deposited under various discharge gas pressures at room temperature by using reactive magnetron sputtering. The microstructure of WO3 thin films was investigated by X-ray diffraction, scanning electron microscopy, and by the measurement of physical adsorption isotherms. The effective surface area and pore volume of WO3 thin films increase with increasing discharge gas pressure from 0.4 to 12 Pa. Gas sensors based on WO3 thin films show reversible response to NO2 gas and H2 gas at an operating temperature of 50-300 °C. The peak sensitivity is found at 200 °C for NO2 gas and the peak sensitivity appears at 300 °C for H2 gas. For both kinds of detected gases, the sensor sensitivity increases linearly with an increase of effective surface area of WO3 thin films. The results demonstrate the importance of achieving high effective surface area on improving the gas sensing performance.  相似文献   

20.
Critical to the development of all‐solid‐state lithium‐ion batteries technology are novel solid‐state electrolytes with high ionic conductivity and robust stability under inorganic solid‐electrolyte operating conditions. Herein, by using density functional theory and molecular dynamics, a mixed oxygen‐sulfur‐based Li‐superionic conductor is screened out from the local chemical structure of β‐Li3PS4 to discover novel Li14P2Ge2S8O8 (LPGSO) with high ionic conductivity and high stability under thermal, moist, and electrochemical conditions, which causes oxygenation at specific sites to improve the stability and selective sulfuration to provide an O‐S mixed path by Li‐S/O structure units with coordination number between 3 and 4 for fast Li‐cooperative conduction. Furthermore, LPGSO exhibits a quasi‐isotropic 3D Li‐ion cooperative diffusion with a lesser migration barrier (≈0.19 eV) compared to its sulfide‐analog Li14P2Ge2S16. The theoretical ionic conductivity of this conductor at room temperature is as high as ≈30.0 mS cm?1, which is among the best in current solid‐state electrolytes. Such an oxy‐sulfide synergistic effect and Li‐ion cooperative migration mechanism would enable the engineering of next‐generation electrolyte materials with desirable safety and high ionic conductivity, for possible application in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号