首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing l-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed l-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties.  相似文献   

2.
Fluorescent alloyed ternary ZnSeS quantum dots (QDs) have been synthesized via the pyrolysis of organometallic precursors. The effects of passivation of ZnTe and ZnTe/ZnS shells on the optical properties of the ternary alloyed ZnSeS core have been studied. A ligand exchange reaction using l-cysteine as a capping ligand was used to obtain water-soluble nanocrystals. The nanocrystals were each characterized by UV/vis absorption and fluorescence spectroscopy, transmission electron microscopy, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) quantum yield (QY) of alloyed ZnSeS QDs was 14% and this value increased to 27% when ZnTe was overcoated around the surface but further coating with a ZnS shell decreased the PL QY slightly to 24%. This implies that ZnTe shell suppressed non-radiative recombination exciton states in the alloyed core while further layering with a ZnS shell offered no further improvement in suppressing the defect states. XPS analysis confirmed the presence of the first shell layering but showed a weakened intensity signal of S (2p) and Se (3d) for the ZnSeS/ZnTe/ZnS QDs. Our work demonstrates for the first time that shell passivation of alloyed Zn-based QDs can offer improved optical properties. We hope the optical information presented in this work will be useful in the selection of alloyed Zn-based QDs appropriate for the intended application.  相似文献   

3.
Highly luminescent blue-emitting CdS/ZnS core/shell quantum dots (QDs) were synthesized in N-oleoylmorpholine by two facile steps: first, the CdS core QDs were prepared via a simple one-pot method involving a direct reaction of Cd precursor cadmium stearate and S precursor S powder in solvent N-oleoylmorpholine; second, ZnS shells were successively overcoated on CdS core through the decomposition of single molecular precursor zinc diethyldithiocarbamate. The thickness of shell was precisely tuned by controlling drip feed speed and amount of shell precursor. The obtained CdS/ZnS core/shell QDs showed the maximum photoluminescent quantum yield of 54.8% and narrow spectra bandwidth, exhibiting high monodispersity, good color purity and long fluorescent lifetimes. The CdS/ZnS core/shell QDs with tunable emission wavelength of 424–470 nm were obtained by controlling the thickness of ZnS shell overgrown on different-sized CdS QDs, which are promising materials for blue light-emitting devices.  相似文献   

4.
A one‐step method to produce ≈12 nm hydrodynamic diameter water‐soluble CdSe/ZnS quantum dots (QDs), as well as CdS/ZnS, ZnSe/ZnMnS/ZnS, AgInS2/ZnS, and CuInS2/ZnS QDs, by ligand exchange with a near‐monolayer of organosilane caps is reported. The method cross‐links the surface‐bound silane ligands such that the samples are stable on the order of months under ambient conditions. Furthermore, the samples may retain a high quantum yield (60%) over this time. Several methods to functionalize aqueous QD dispersions with proteins and fluorescent dyes have been developed with reaction yields as high as 97%.  相似文献   

5.
NIR‐emitting CdSeTe/CdS/ZnS core/shell/shell QD‐encoded microbeads are combined with common flow cytometry with one laser for multiplexed detection of hepatitis B virus (HBV). A facile one‐pot synthetic route is developed to prepare CdSeTe/CdS/ZnS core/shell/shell QDs with high photoluminescence quantum yield and excellent stability in liquid paraffin, and a Shirasu porous glass (SPG) membrane emulsification technique is applied to incorporate the QDs into polystyrene–maleic anhydride (PSMA) microbeads to obtain highly fluorescent QD‐encoded microbeads. The relatively wide NIR photoluminescence full width half maximum of the CdSeTe/CdS/ZnS QDs is used to develop a ‘single wavelength’ encoding method to obtain different optical codes by changing the wavelengh and emission intensity of the QDs incorporated into the microbeads. Moreover, a detection platform combining NIR‐emitting CdSeTe/CdS/ZnS QD‐encoded microbeads and Beckman Coulter FC 500 flow cytometry with one laser of 488 nm is successfully used to conduct a 2‐plex hybridization assay for hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and a 3‐plex hybridization assay for hepatitis B surface antibody (HBsAb), hepatitis B e antibody (HBeAb), and hepatitis B core antibody (HBcAb), which suggests the promising application of NIR QD‐encoded microbeads for multiplex immunoassays.  相似文献   

6.
Colloidal CdSe/Zn(0.5)Cd(0.5)Se/ZnSe/ZnS core/multishell quantum dots (QDs) were synthesized by using the well developed successive ion layer adsorption and reaction (SILAR) technique. The UV-vis and PL spectra, TEM, X-ray diffraction and Raman measurement were performed to investigate the structure and optical properties of prepared QDs during the growth of shell layers, which indicated that the stress in CdSe core became stronger with the increasing shell thickness. Due to the gradual adjustment of the lattice parameters in the radial direction and the radial increase of the respective valence- and conduction-band offsets, the optical measurements show a significant enhancement in the photoluminescence quantum yield (QY) and an expedited radiative decay in QDs overcoated with thicker shell. The temperature-dependent optical spectra were measured, and the relation between the microstructure and the optical properties of these core/multishell quantum dots was discussed.  相似文献   

7.
Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c‐ALD) provides the ability to produce their core/shell heterostructures. However, as c‐ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near‐unity efficiency CdSe/ZnS NPLs are shown using hot‐injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI‐shell hetero‐NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c‐ALD shell‐coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI‐shell NPLs exhibit ultralow gain thresholds reaching ≈7 µJ cm?2. Despite being annealed at 500 K, these ZnS‐HI‐shell NPLs possess low gain thresholds as small as 25 µJ cm?2. These findings indicate that the proposed 573 K HI‐shell‐grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.  相似文献   

8.
Kim JU  Lee MH  Yang H 《Nanotechnology》2008,19(46):465605
3.6?nm sized Mn-doped Zn(1-x)Cd(x)S quantum dots (QDs) with the composition (x) of 1, 0.5, 0.2 and 0 were synthesized by a reverse micelle approach. The bandgap energy of Zn(1-x)Cd(x)S:Mn QDs was tuned to a higher energy by increasing the Zn content, and the actual composition of alloyed Zn(1-x)Cd(x)S:Mn QDs was found to be different from the solution composition. Consecutive overcoating of the Zn(1-x)Cd(x)S:Mn QD surface by a ZnS shell was done, and the core/shell structured QDs exhibited quantum yields of 14-30%, depending on the composition of the core QDs. Using CdS:Mn/ZnS QDs, orange and white light-emitting diodes (LEDs) pumped by a near-UV and blue LED chips, respectively, were fabricated and their optical properties are described.  相似文献   

9.
Many of the most advanced applications of semiconductor quantum dots (QDs) in quantum information technology require a fine control of the QDs' position and confinement potential, which cannot be achieved with conventional growth techniques. Here, a novel and versatile approach for the fabrication of site‐controlled QDs is presented. Hydrogen incorporation in GaAsN results in the formation of N–2H and N–2H–H complexes, which neutralize all the effects of N on GaAs, including the N‐induced large reduction of the bandgap energy. Starting from a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well, the N? H bonds located within the light spot generated by a scanning near‐field optical microscope tip are broken, thus obtaining site‐controlled GaAsN QDs surrounded by a barrier of GaAsN:H (laterally) and GaAs (above and below). By adjusting the laser power density and exposure time, the optical properties of the QDs can be finely controlled and optimized, tuning the quantum confinement energy over more than 100 meV and resulting in the observation of single‐photon emission from both the exciton and biexciton recombinations. This novel fabrication technique reaches a position accuracy <100 nm and it can easily be applied to the realization of more complex nanostructures.  相似文献   

10.
Quantum dots (QDs) are being highlighted in display applications for their excellent optical properties, including tunable bandgaps, narrow emission bandwidth, and high efficiency. However, issues with their stability must be overcome to achieve the next level of development. QDs are utilized in display applications for their photoluminescence (PL) and electroluminescence. The PL characteristics of QDs are applied to display or lighting applications in the form of color‐conversion QD films, and the electroluminescence of QDs is utilized in quantum dot light‐emitting diodes (QLEDs). Studies on the stability of QDs and QD devices in display applications are reviewed herein. QDs can be degraded by oxygen, water, thermal heating, and UV exposure. Various approaches have been developed to protect QDs from degradation by controlling the composition of their shells and ligands. Phosphorescent QDs have been protected by bulky ligands, physical incorporation in polymer matrices, and covalent bonding with polymer matrices. The stability of electroluminescent QLEDs can be enhanced by using inorganic charge transport layers and by improving charge balance. As understanding of the degradation mechanisms of QDs increases and more stable QDs and display devices are developed, QDs are expected to play critical roles in advanced display applications.  相似文献   

11.
A facile approach to prepare CdSe/ZnS quantum dot-encapsulated chitosan hybrid nanospheres (CS-QD) is developed by utilizing ethanol-aided counterion complexation in aqueous solution. The obtained CS-QD hybrid nanospheres have not only the loading space provided by the chitosan spherical matrix for loading multiply QDs but also unique fluorescent properties provided by the encapsulated QDs. Moreover, these hybrid nanospheres possess good biocompatibility and optical stability in physiological environment. It is demonstrated that CS-QD hybrid nanospheres can be internalized by tumor cells and hence act as labeling agent in cell imaging by optical microscopy. In addition, CS-QD hybrid nanospheres can be used for imaging of tumor in tumor-bearing mice via intratumoral administration and can accumulate at tumor site via the blood circulation based on intravenous injection. Thus, on the one hand, chitosan nanospheres provide the protection in both colloidal and optical stability arising from QDs and offer biocompatibility. On the other hand, the encapsulated QDs light up polymer nanospheres and display the fate of polymer nanospheres in cells and bodies.  相似文献   

12.
Cadmium-free I-III-VI quantum dots (QDs), represented by Cu-In-S (CIS), are widely investigated for their non-toxicity and tunable emission properties. In this work, Zn-Cu-In-S (ZCIS) alloyed QDs were synthesized via a solvothermal approach by heating up a mixture of the corresponding metal precursors and sulphur powder with dodecanethiol in oleylamine media, and the fluorescent intensity was greatly enhanced by coating ZnS (ZS) shell. By changing the ratio of Cu, the as prepared ZCIS-ZS QDs showed composition-tunable photoluminescent (PL) emission over the visible spectral window from about 500 nm to 620 nm, which is much wider than that of CIS QDs. Moreover, the influence of excitation wavelength, reaction temperature and time on the optical properties of the ZCIS-ZS QDs was also studied. This research provides a feasible and simple approach to prepare ZCIS-ZS QDs with large tunable spectral range on visible region, which could greatly contribute to the development of potential applications due to their non-toxicity and excellent optical properties.  相似文献   

13.
Byun HJ  Song WS  Yang H 《Nanotechnology》2011,22(23):235605
The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180?°C for 24 h by using a P source of P(N(CH(3))(2))(3). The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.  相似文献   

14.
CuInS2 quantum dots are considered near-ideal fluorophores based on their bright emission and low toxicity. However, CuInS2 quantum dots are still bothered by their sensitivity to surface chemistry and chemical environment. Traditionally, the CIS QDs require an additional coating process to be encapsulated inside silica sphere or organic polymer. Up till now, few works have been made concerning improving the intrinsic stability of CIS QDs. In an effort to improve the stability of CuInS2 quantum dots, we came up with a new method by increasing the ZnS shell thickness. These QDs were characterized by photoluminescence, HRTEM, XRD and XRF analysis. We investigated the influence of ZnS shell thickness on the ambient stability of CIS/ZnS QDs. The results demonstrated that a thicker ZnS shell helped significantly improve both photostability and chemical stability of the QDs. Finally, the thick shell QDs were dispersed into transparent polymer matrix and fabricated into a LED device, which also gave much more stability compared with conventional QDs.  相似文献   

15.
In order to understand the effect of capping ligand on optical and electrical properties of semiconductor quantum dots (QDs), we have added liquid crystal (8CB) to the CdSe/CdS/ZnS QDs monolayer formed via the Langmuir Blodgett technique And studied emission spectra and conducting properties of resulting QDs. The assembly of QDs monolayer modified by liquid crystal (8CB) can be tuned by varying the temperature. The mechanism of the influence of capping ligands on the gap energy, dipole moment and charge distribution within (CdSe)13 cluster was studied via quantum chemical calculations, i.e. we have used density functional theory to systematically investigate the equilibrium configuration of QDs passivated by oleic acid and liquid crystal ligands.  相似文献   

16.
Viral capsid–nanoparticle hybrid structures offer new opportunities for nanobiotechnology. We previously generated virus‐based nanoparticles (VNPs) of simian virus 40 (SV40) containing quantum dots (QDs) for cellular imaging. However, as an interesting issue of nano‐bio interfaces, the mechanism of nanoparticle (NP) encapsulation by viral coat proteins remains unclear. Here, four kinds of QDs with the same core/shell but different surface coatings are tested for encapsulation. All the QDs can be encapsulated efficiently and there is no correlation between the encapsulation efficiency and the surface charge of the QDs. All the SV40 VNPs encapsulating differently modified QDs show similar structures, fluorescence properties, and activity in entering living cells. These results demonstrate the flexibility of SV40 major capsid protein VP1 in NP encapsulation and provide new clues to the mechanism of NP packaging by viral shells.  相似文献   

17.
We describe, in this paper, the sol-gel synthesis of di-ureasil based nanocomposites prepared in situ in the presence of organically capped CdSe quantum dots (QDs) or CdSe QDs which have been coated with a ZnS shell. For the latter a new chemical route to coat the CdSe QDs with ZnS shells was investigated and is now reported. The QDs became well dispersed in the final nanocomposites, whose microstructural homogeneity was evaluated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses. In order to understand the optical behaviour of di-ureasil containing QDs, a detailed photoluminescent study was undertaken for a selected particle size distribution of ZnS coated CdSe QDs (d~4.5?nm). Emission quantum yields up to 0.11 were measured in the final nanocomposites that present a huge (between 3 and 6 orders of magnitude) increase in the lifetime of the QDs (relative to that of isolated ones), as a result of energy transfer occurring between the intimately mixed di-ureasil host and the QDs.  相似文献   

18.
Detection of an analyte via supramolecular host–guest binding and quantum dot (QD)‐based fluorescence resonance energy transfer (FRET) signal transduction mechanism is demonstrated. Surface patterns consisting of CdSe/ZnS QDs functionalized at their periphery with β‐cyclodextrin (β‐CD) were obtained by immobilization of the QDs from solution onto glass substrates patterned with adamantyl‐terminated poly(propylene imine) dendrimeric “glue.” Subsequent formation of host–guest complexes between vacant β‐CD on the QD surface and an adamantyl‐functionalized lissamine rhodamine resulting in FRET was confirmed by fluorescence microscopy, spectroscopy, and fluorescence lifetime imaging microscopy (FLIM).  相似文献   

19.
Zhang B  Gong X  Hao L  Cheng J  Han Y  Chang J 《Nanotechnology》2008,19(46):465604
In this paper, based on selecting the appropriate type of quantum dots (QDs), a novel method is developed to enhance the quantum yield (QY) of silica-coated QD nanoparticles (SQDNPs). The effect of varying types of QDs on the QY after silica encapsulation is systematically studied. The results show that QDs with appropriate structure and composition of shells can much better retain the initial QY after silanization. The seven-layered shell/core QDs with QY of 47.8% nearly completely retain the original QY and is the best type among six types of QDs for silica modification. In the aspect of shell composition, the CdS plays an important role for QY retention since the lattice mismatch between CdSe and CdS is lower than that of CdSe and ZnS. After the appropriate type of QDs is chosen for silica coating, the highly fluorescent SQDNPs are chemically modified with amine, thiol and carboxyl groups, and then labeled by antibodies for particle-based immunofluorescence assay. The results indicate that the SQDNPs-antibody bioconjugates are alternative fluorescent probes useful for biodetection.  相似文献   

20.
A simple two-step strategy using phospholipid (PPL) to functionalize core/shell CdSe/ZnS quantum dots (QDs) has been described. The experimental data show that the use of S-H terminated PPL results not only in the high colloidal stability of core/shell CdSe/ZnS QDs in the aqueous phase, but also in the significant enhancement of photoluminescence. The degree of the enhancement is a function of the PPL-CdSe/ZnS QDs sample concentration. These results might be promising for future biological platform in new devices ranging from photovoltaic cells to biosensors and other devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号