首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
3.
As a physical cue for controlling the fate of stem cells, surface nanotopography has attracted much attention to improve the integration between implants and local host tissues and cells. A biocompatible surface TiO2 nanorod array is proposed to regulate the fate of bone marrow derived mesenchymal stem cells (MSCs). TiO2 substrates with different surface nanotopographies: a TiO2 nanorod array and a polished TiO2 ceramic are built by hydrothermal and sintering processes, respectively. The assessment of morphology, viability, gene expression, and protein characterization of the MSCs cultured on the different TiO2 substrates proves that a TiO2 nanorod array promotes the osteogenic differentiation of MSCs, while a TiO2 ceramic with a smooth surface suppresses it. Periodically assembled TiO2 nanorod array stripes on the smooth TiO2 ceramic are constructed by a combination of microfabrication and a chemical synthesis process, which realizes the location‐committed osteogenic differentiation of MSCs. A route to control the differentiation of MSCs by a nanostructured surface, which can also control the location and direction of MSCs on the surface of biomaterials with micro‐nano scale surface engineering, is demonstrated.  相似文献   

4.
5.
Injectable polymer microsphere‐based stem cell delivery systems have a severe problem that they do not offer a desirable environment for stem cell adhesion, proliferation, and differentiation because it is difficult to entrap a large number of hydrophilic functional protein molecules into the core of hydrophobic polymer microspheres. In this work, soybean lecithin (SL) is applied to entrap hydrophilic bone morphogenic protein‐2 (BMP‐2) into nanoporous poly(lactide‐co‐glycolide) (PLGA)‐based microspheres by a two‐step method: SL/BMP‐2 complexes preparation and PLGA/SL/BMP‐2 microsphere preparation. The measurements of their physicochemical properties show that PLGA/SL/BMP‐2 microspheres had significantly higher BMP‐2 entrapment efficiency and controlled triphasic BMP‐2 release behavior compared with PLGA/BMP‐2 microspheres. Furthermore, the in vitro and in vivo stem cell behaviors on PLGA/SL/BMP‐2 microspheres are analyzed. Compared with PLGA/BMP‐2 microspheres, PLGA/SL/BMP‐2 microspheres have significantly higher in vitro and in vivo stem cell attachment, proliferation, differentiation, and matrix mineralization abilities. Therefore, injectable nanoporous PLGA/SL/BMP‐2 microspheres can be potentially used as a stem cell platform for bone tissue regeneration. In addition, SL can be potentially used to prepare hydrophilic protein‐loaded hydrophobic polymer microspheres with highly entrapped and controlled release of proteins.  相似文献   

6.
Microsphere (MS)‐based systems provides great advantages for cell expansion and transplantation due to their high surface‐to‐volume ratio and biomimetic environment. However, a MS‐based system that includes cell attachment, proliferation, passage, harvest, cryopreservation, and tissue engineering together has not been realized yet. An “all‐in‐one” gel MS‐based system is established for human adipose‐derived mesenchymal stem cells (hADSCs), realizing real 3D culture with enhanced expansion efficiency and simplified serial cell culture operations, and construction of macrotissues with uniform cell distribution and specific function. A 3D digital light‐processing technology is developed to fabricate gel MSs in an effective way. The printed MSs present a suitable environment with rough surface architecture and the mechanical properties of soft tissues, leading to high cell viability, attachment, proliferation, activity, and differentiation potential. Further, convenient standard operation procedures, including cell passage, detachment, and cryopreservation, are established for cell culture on the gel MSs. Finally, hADSCs‐loaded gel MSs form macrotissues through a “bottom‐up” approach, which demonstrates the potential applications for tissue engineering. These findings exhibit the feasibility and beauty of “all‐in‐one” stem cell culture and tissue engineering system.  相似文献   

7.
8.
Cryopreservation is essential to effectively extend the shelf life of delicate biomaterials while maintaining proper levels of cell functions. Cryopreservation requires a cryoprotective agent (CPA) to suppress intracellular ice formation during freezing, but it must be removed prior to clinical use due to its toxicity. Conventional multistep CPA loading and unloading approaches are time consuming, often creating osmotic shocks and causing mechanical injuries for biological samples. An efficient surface‐acoustic‐wave‐ (SAW‐) based lab‐on‐a‐chip (LoC) for fast loading and removal of CPAs is presented here. With the SAW‐based multistep CPA loading/removal approach, high concentration (3 m ) CPA can be successfully loaded and removed in less than 1 min. Results show that the technique causes the least harm to umbilical cord matrix mesenchymal stem cells as compared to conventional method, and an average of 24% higher cell recovery rate is achieved, while preserving the integrity and morphology of the cells. This device is the first of its kind to combine high loading/unloading efficiency, high cell viability, and high throughput into one LoC device, offering not only a more efficient and safer route for CPA loading and removal from cells, but also paving the way for other cryopreservation‐dependent applications.  相似文献   

9.
The therapeutic efficiency of allogenic/intrinsic neural stem cells (NSCs) after spinal cord injury is severely compromised because the hostile niche at the lesion site incurs massive astroglial but not neuronal differentiation of NSCs. Although many attempts are made to reconstruct a permissive niche for nerve regeneration, solely using a living cell material to build an all‐in‐one, multifunctional, permissive niche for promoting neuronal while inhibiting astroglial differentiation of NSCs is not reported. Here, ectomesenchymal stem cells (EMSCs) are reported to serve as a living, smart material that creates a permissive, all‐in‐one niche which provides neurotrophic factors, extracellular matrix molecules, cell–cell contact, and favorable substrate stiffness for directing NSC differentiation. Interestingly, in this all‐in‐one niche, a corresponding all‐in‐one signal‐sensing platform is assembled through recruiting various niche signaling molecules into lipid rafts for promoting neuronal differentiation of NSCs, and meanwhile, inhibiting astrocyte overproliferation through the connexin43/YAP/14‐3‐3θ pathway. In vivo studies confirm that EMSCs can promote intrinsic NSC neuronal differentiation and domesticating astrocyte behaviors for nerve regeneration. Collectively, this study represents an all‐in‐one niche created by a single‐cell material—EMSCs for directing NSC differentiation.  相似文献   

10.
11.
12.
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号