首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
    
Synthesizing ultrathin 2D metal–organic framework nanosheets in high yields has received increasing research interest but remains a great challenge. In this work, ultrathin zirconium‐porphyrinic metal–organic framework (MOF) nanosheets with thickness down to ≈1.5 nm are synthesized through a pseudoassembly–disassembly strategy. Owing to the their unique properties originating from their ultrathin thickness and highly exposed active sites, the as‐prepared ultrathin nanosheets exhibit far superior photocatalysis performance compared to the corresponding bulk MOF. This work highlights new opportunities in designing ultrathin MOF nanosheets and paves the way to expand the potential applications of MOFs.  相似文献   

4.
    
Metal–organic frameworks (MOFs) are constructed by periodically alternate metal ions with organic ligands, which offer structural diversity and a wide range of interesting properties as an attractive classification of crystalline porous materials. Integration of MOFs with other size‐limited functional centers can supply new multifunctional composites, which exhibit both the properties of the components and new characteristics due to the combination of MOFs with the selected loadings. In recent years, integration of metal/metal oxide nanoparticles (MNPs) into MOFs to form the composite catalysts has attracted considerable attention due to the superior performance. In this review, the latest studies and up‐to‐date developments on the design and synthetic strategy of new MNP@MOF composite catalysts are specifically highlighted. Both the achievements and problems are evaluated and proposed, and the opportunities and challenges of MNP@MOF composite catalysts are discussed.  相似文献   

5.
    
《Small Methods》2017,1(1-2)
Two‐dimensional (2D) metal–organic framework (MOF) nanosheets are attracting increasing research interest due to their unique properties originating from their ultrathin thickness and large surface area with highly accessible active sites. Here, the aim is to provide recent advances in the synthesis of 2D MOF nanosheets by using the top‐down and bottom‐up methods, including sonication exfoliation, interfacial synthesis, three‐layer synthesis, and surfactant‐assisted synthesis methods. In addition, the recent progress in 2D‐MOF‐nanosheet‐based nanocomposites is also introduced. The synthesis of 2D MOF nanosheets should lead to new kinds of functional nanomaterials for a wide range of applications.  相似文献   

6.
7.
    
As one of the common reactive oxygen species, H2O2 has been widely used for combating pathogenic bacterial infections. However, the high dosage of H2O2 can induce undesired damages to normal tissues and delay wound healing. In this regard, peroxidase‐like nanomaterials serve as promising nanozymes, thanks to their positive promotion toward the antibacterial performance of H2O2, while avoiding the toxicity caused by the high concentrations of H2O2. In this work, ultrasmall Au nanoparticles (UsAuNPs) are grown on ultrathin 2D metal–organic frameworks (MOFs) via in situ reduction. The formed UsAuNPs/MOFs hybrid features both the advantages of UsAuNPs and ultrathin 2D MOFs, displaying a remarkable peroxidase‐like activity toward H2O2 decomposition into toxic hydroxyl radicals (·OH). Results show that the as‐prepared UsAuNPs/MOFs nanozyme exhibits excellent antibacterial properties against both Gram‐negative (Escherichia coli) and Gram‐positive (Staphylococcus aureus) bacteria with the assistance of a low dosage of H2O2. Animal experiments indicate that this hybrid material can effectively facilitate wound healing with good biocompatibility. This study reveals the promising potential of a hybrid nanozyme for antibacterial therapy and holds great promise for future clinical applications.  相似文献   

8.
9.
10.
    
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

11.
    
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

12.
    
Metal–organic framework nanosheets (MOF NSs) have drawn a lot of attention lately; however, the interfacial behavior of these 2D MOFs has rarely been investigated. Here, the partition and distribution of 2D NS and 3D nanoparticle (NP) of copper benzenedicarboxylate (CuBDC) at the oil/water interface are imaged by cryo‐scanning electron microscopy. A layer of ≈20 nm NS‐CuBDC is detected with a lateral orientation along the interface, which is attributed to the existence of relatively hydrophobic planes and hydrophilic edges in NS‐CuBDC. The highly hydrophilic CuBDC localizes along the interface within the water phase. The self‐assembly of NS‐CuBDC is found to be a facile method to construct small cubical NPs. The exchange of water into CuBDC leads to super hydrophilic wettability. Ascribed to their amphiphilic properties, NP‐CuBDC acts as sole stabilizer to form stable oil‐in‐water emulsions. Synchrotron‐based computed tomography is used to characterize the 3D distribution of CuBDC in emulsions at room temperature. This work provides great insights in the fundamental study of MOFs at the oil/water interface and may lead to further development of ultrathin 2D MOF membranes.  相似文献   

13.
14.
15.
    
The in situ electrochemical growth of Cu benzene‐1,3,5‐tricarboxylate (CuBTC) metal–organic frameworks, as an affinity layer, directly on custom‐fabricated Cu interdigitated electrodes (IDEs) is described, acting as a transducer. Crystalline 5–7 µm thick CuBTC layers are grown on IDEs consisting of 100 electrodes with a width and a gap of both 50 µm and a height of 6–8 µm. These capacitive sensors are exposed to methanol and water vapor at 30 °C. The affinities show to be completely reversible with higher affinity toward water compared to methanol. For exposure to 1000 ppm methanol, a fast response is observed with a capacitance change of 5.57 pF at equilibrium. The capacitance increases in time followed diffusion‐controlled kinetics (k = 2.9 mmol s?0.5 g?1CuBTC). The observed capacitance change with methanol concentration follows a Langmuir adsorption isotherm, with a value for the equilibrium affinity K e = 174.8 bar?1. A volume fraction f MeOH = 0.038 is occupied upon exposure to 1000 ppm of methanol. The thin CuBTC affinity layer on the Cu‐IDEs shows fast, reversible, and sensitive responses to methanol and water vapor, enabling quantitative detection in the range of 100–8000 ppm.  相似文献   

16.
    
Biomass is the most abundant renewable resource on earth and developing high‐performance nonprecious selective hydrogenation (SH) catalysts will enable the use of biomass to replace rapidly diminishing fossil resources. This work utilizes ZIF‐67‐derived nitrogen‐doped carbon nanotubes to confine Co nanoparticles (NPs) with Co–Nx active sites as a high‐performance SH catalyst. The confined Co NPs with Co–Nx exhibit excellent catalytic activity, selectivity, and stability toward a wide range of biomass‐derived compounds. Such active sites can selectively hydrogenate aldehyde, ketone, carboxyl, and nitro groups of biomass‐derived compounds into value‐added fine chemicals with 100% selectivity. The reported approach could be adopted to create other forms of catalytically active sites from other nonprecious metals.  相似文献   

17.
    
Metal–organic framework (MOF) nanosheets, an emerging family of 2D materials, have gained significant attention due to their thin thickness, large surface areas, abundant exposed accessible active sites, etc. However, it is still a big challenge to fabricate high‐quality 2D MOF nanosheets in high yields. Herein, a novel and facile synthetic strategy, named as instant in situ exfoliation method, is developed to prepare 2D MOF nanosheets with large lateral dimension, which combines the characteristics and advantages of the popular top‐down and bottom‐up approaches. Employing such methodology, the large MOF nanosheets with twofold interpenetrated 2D structure and unique fluorescent properties are massively obtained from the precursors in a high overall yield of 67%, of which the minimum thickness is ≈14.0 nm. Owing to their unique interpenetrated structure, lamellar morphology, and high fluorescent emission, the resultant MOF nanosheets are capable of functioning as an efficient fluorescent sensor to selectively and sensitively detect the Fe3+ and Al3+ ions, exhibiting much better detection limitation compared with the corresponding bulk MOF.  相似文献   

18.
    
Solid‐state batteries (SSBs) are promising for safer energy storage, but their active loading and energy density have been limited by large interfacial impedance caused by the poor Li+ transport kinetics between the solid‐state electrolyte and the electrode materials. To address the interfacial issue and achieve higher energy density, herein, a novel solid‐like electrolyte (SLE) based on ionic‐liquid‐impregnated metal–organic framework nanocrystals (Li‐IL@MOF) is reported, which demonstrates excellent electrochemical properties, including a high room‐temperature ionic conductivity of 3.0 × 10‐4 S cm‐1, an improved Li+ transference number of 0.36, and good compatibilities against both Li metal and active electrodes with low interfacial resistances. The Li‐IL@MOF SLE is further integrated into a rechargeable Li|LiFePO4 SSB with an unprecedented active loading of 25 mg cm‐2, and the battery exhibits remarkable performance over a wide temperature range from ?20 up to 150 °C. Besides the intrinsically high ionic conductivity of Li‐IL@MOF, the unique interfacial contact between the SLE and the active electrodes owing to an interfacial wettability effect of the nanoconfined Li‐IL guests, which creates an effective 3D Li+ conductive network throughout the whole battery, is considered to be the key factor for the excellent performance of the SSB.  相似文献   

19.
    
A new type of hollow nanostructure featured double metal‐organic frameworks shells with metal nanoparticles (MNPs) is designed and fabricated by the methods of ship in a bottle and bottle around the ship. The nanostructure material, hereinafter denoted as Void@HKUST‐1/Pd@ZIF‐8, is confirmed by the analyses of photograph, transmission electron microscopy, scanning electron microscopy, powder X‐ray diffraction, inductively coupled plasma, and N2 sorption. It possesses various multifunctionally structural characteristics such as hollow cavity which can improve mass transfer, the adjacent of the inner HKUST‐1 shell to the void which enables the matrix of the shell to host and well disperse MNPs, and an outer ZIF‐8 shell which acts as protective layer against the leaching of MNPs and a sieve to guarantee molecular‐size selectivity. This makes the material eligible candidates for the heterogeneous catalyst. As a proof of concept, the liquid‐phase hydrogenation of olefins with different molecular sizes as a model reaction is employed. It demonstrates the efficient catalytic activity and size‐selectivity of Void@HKUST‐1/Pd@ZIF‐8.  相似文献   

20.
    
Metal–organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号