首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phototransistors with a structure of a nitrogen‐doped graphene quantum dots (NGQDs)–perovskite composite layer and a mildly reduced graphene oxide (mrGO) layer are fabricated through a solution‐processing method. This hybrid phototransistor exhibits broad detection range (from 365 to 940 nm), high photoresponsivity (1.92 × 104 A W?1), and rapid response to light on–off (≈10 ms). NGQDs offer an effective and fast path for electron transfer from the perovskite to the mrGO, resulting in the improvement of photocurrent and photoswitching characteristics. The high photoresponsivity can also be ascribed to a photogating effect in the device. In addition, the phototransistor shows good stability with poly(methyl methacrylate) encapsulation, and can maintain 85% of its initial performance for 20 d in ambient air.  相似文献   

2.
All‐inorganic halide perovskites (IHPs) have attracted enormous attention due to their intrinsically high optical absorption coefficient and superior ambient stabilities. However, the photosensitivity of IHP‐based photodetectors is still restricted by their poor conductivities. Here, a facile design of hybrid phototransistors based on the CsPbBr3 thin film and indium tin oxide (ITO) nanowires (NWs) integrated into a InGaZnO channel in order to achieve both high photoresponsivity and fast response is reported. The metallic ITO NWs are employed as electron pumps and expressways to efficiently extract photocarriers from CsPbBr3 and inject electrons into InGaZnO. The obtained device exhibits the outstanding responsivity of 4.9 × 106 A W?1, which is about 100‐fold better than the previous best results of CsPbBr3‐based photodetectors, together with the fast response (0.45/0.55 s), long‐term stability (200 h in ambient), and excellent mechanical flexibility. By operating the phototransistor in the depletion regime, an ultrahigh specific detectivity up to 7.6 × 1013 Jones is achieved. More importantly, the optimized spin‐coating manufacturing process is highly beneficial for achieving uniform InGaZnO‐ITO/perovskite hybrid films for high‐performance flexible detector arrays. All these results can not only indicate the potential of these hybrid phototransistors but also provide a valuable insight into the design of hybrid material systems for high‐performance photodetection.  相似文献   

3.
Traditional carbon materials have demonstrated immense potential in perovskite solar cells (PSCs) owing to their superior electrical properties and environmental stability. Graphdiyne (GDY), as an emerging carbon allotrope, features uniformly distributed pores, endless design flexibility, and unique electronic character compared with traditional carbon materials. Herein, graphdiyne is introduced into the upper part of the perovskite (CH3NH3PbI3) layer by utilizing a GDY‐containing antisolvent during the one‐step synthesis of perovskite. Intriguingly, GDY plays an essential role in hole accumulation and transportation because of its higher Fermi level than perovskite. As a result, the automatic separation of photogenerated carriers inside the perovskite film is achieved. Furthermore, the Schottky barrier formed on the interface between perovskite and GDY guarantees the unidirectional hole transport from perovskite to GDY, thereby benefiting further extraction to the hole transport layer. Consequently, GDY‐modified perovskite‐based planar PSCs exhibit a boosted Jsc of 24.21 mA cm?2 and up to 19.6% power conversion efficiency owing to the increased efficient light utilization and charge extraction. The device with GDY modification exhibits less than 10% shrinkage after a month in ambience. Overall, this work demonstrates an easy method for the utilization of GDY to boost the charge extraction and environmental stability in PSCs.  相似文献   

4.
Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low‐cost solution‐processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high‐performance photodetectors based on all‐inorganic cesium lead halide perovskite (CsPbIxBr3–x), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm?2 and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite‐based photodetectors. Moreover, the photodetectors exhibit outstanding long‐term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all‐inorganic metal halide perovskite‐based photodetectors have great application potential for optical communication.  相似文献   

5.
2D transition metal dichalcogenides (TMDs) based photodetectors have shown great potential for the next generation optoelectronics. However, most of the reported MoS2 photodetectors function under the photogating effect originated from the charge‐trap mechanism, which is difficult for quantitative control. Such devices generally suffer from a poor compromise between response speed and responsivity (R) and large dark current. Here, a dual‐gated (DG) MoS2 phototransistor operating based on the interface coupling effect (ICE) is demonstrated. By simultaneously applying a negative top‐gate voltage (VTG) and positive back‐gate voltage (VBG) to the MoS2 channel, the photogenerated holes can be effectively trapped in the depleted region under TG. An ultrahigh R of ≈105 A W?1 and detectivity (D*) of ≈1014 Jones are achieved in several devices with different thickness under Pin of 53 µW cm?2 at VTG = ?5 V. Moreover, the response time of the DG phototransistor can also be modulated based on the ICE. Based on these systematic measurements of MoS2 DG phototransistors, the results show that the ICE plays an important role in the modulation of photoelectric performances. The results also pave the way for the future optoelectrical application of 2D TMDs materials and prompt for further investigation in the DG structured phototransistors.  相似文献   

6.
Corrosive precursors used for the preparation of organic–inorganic hybrid perovskite photoactive layers prevent the application of ultrathin metal layers as semitransparent bottom electrodes in perovskite solar cells (PVSCs). This study introduces tin‐oxide (SnOx) grown by atomic layer deposition (ALD), whose outstanding permeation barrier properties enable the design of an indium‐tin‐oxide (ITO)‐free semitransparent bottom electrode (SnOx/Ag or Cu/SnOx), in which the metal is efficiently protected against corrosion. Simultaneously, SnOx functions as an electron extraction layer. We unravel the spontaneous formation of a PbI2 interfacial layer between SnOx and the CH3NH3PbI3 perovskite. An interface dipole between SnOx and this PbI2 layer is found, which depends on the oxidant (water, ozone, or oxygen plasma) used for the ALD growth of SnOx. An electron extraction barrier between perovskite and PbI2 is identified, which is the lowest in devices based on SnOx grown with ozone. The resulting PVSCs are hysteresis‐free with a stable power conversion efficiency (PCE) of 15.3% and a remarkably high open circuit voltage of 1.17 V. The ITO‐free analogues still achieve a high PCE of 11%.  相似文献   

7.
To realize basic electronic units such as complementary metal‐oxide‐semiconductor (CMOS) inverters and other logic circuits, the selective and controllable fabrication of p‐ and n‐type transistors with a low Schottky barrier height is highly desirable. Herein, an efficient and nondestructive technique of electron‐charge transfer doping by depositing a thin Al2O3 layer on chemical vapor deposition (CVD)‐grown 2H‐MoTe2 is utilized to tune the doping from p‐ to n‐type. Moreover, a type‐controllable MoTe2 transistor with a low Schottky barrier height is prepared. The selectively converted n‐type MoTe2 transistor from the p‐channel exhibits a maximum on‐state current of 10 µA, with a higher electron mobility of 8.9 cm2 V?1 s?1 at a drain voltage (Vds) of 1 V with a low Schottky barrier height of 28.4 meV. To validate the aforementioned approach, a prototype homogeneous CMOS inverter is fabricated on a CVD‐grown 2H‐MoTe2 single crystal. The proposed inverter exhibits a high DC voltage gain of 9.2 with good dynamic behavior up to a modulation frequency of 1 kHz. The proposed approach may have potential for realizing future 2D transition metal dichalcogenide‐based efficient and ultrafast electronic units with high‐density circuit components under a low‐dimensional regime.  相似文献   

8.
Organolead trihalide perovskites have attracted significant attention for optoelectronic applications due to their excellent physical properties in the past decade. Generally, both grain boundaries in perovskite films and the device structure play key roles in determining the device performance, especially for horizontal‐structured device. Here, the first optimized vertical‐structured photodetector with the perovskite single crystal MAPbBr3 as the light absorber and graphene as the transport layer is shown. The hybrid device combines strong photoabsorption characteristics of perovskite and high carrier mobility of flexible graphene, exhibits excellent photoresponse performance with high photoresponsivity (≈1017.1 A W?1) and high photodetectivity (≈2.02 × 1013 Jones) in a low light intensity (0.66 mW cm?2) under the actuations of 3 V bias and laser irradiation at 532 nm. In particular, an ultrahigh photoconductive gain of ≈2.37 × 103 is attained because of fast charge transfer in the graphene and large recombination lifetime in the perovskite single crystal. The vertical architecture combining perovskite crystal with highly conductive graphene offers opportunities to fulfill the synergistic effect of perovskite and 2D materials, is thus promising for developing high‐performance electronic and optoelectronic devices.  相似文献   

9.
Self‐powered flexible photodetectors without an external power source can meet the demands of next‐generation portable and wearable nanodevices; however, the performance is far from satisfactory becuase of the limited match of flexible substrates and light‐sensitive materials with proper energy levels. Herein, a novel self‐powered flexible fiber‐shaped photodetector based on double‐twisted perovskite–TiO2–carbon fiber and CuO–Cu2O–Cu wire is designed and fabricated. The device shows an ultrahigh detectivity of 2.15 × 1013 Jones under the illumination of 800 nm light at zero bias. CuO–Cu2O electron block bilayer extends response range of perovskite from 850 to 1050 nm and suppresses dark current down to 10?11 A. The fast response speed of less than 200 ms is nearly invariable after dozens of cycles of bending at the extremely 90 bending angle, demonstrating excellent flexibility and bending stability. These parameters are comparable and even better than reported flexible and even rigid photodetectors. The present results suggest a promising strategy to design photodetectors with integrated function of self‐power, flexibility, and broadband response.  相似文献   

10.
Although the hot‐casting (HC) technique is prevalent in developing preferred crystal orientation of quasi‐2D perovskite films, the difficulty of accurately controlling the thermal homogeneity of substrate is unfavorable for the reproducibility of device fabrication. Herein, a facile and effective non‐preheating (NP) film‐casting method is proposed to realize highly oriented quasi‐2D perovskite films by replacing the butylammonium (BA+) spacer partially with methylammonium (MA+) cation as (BA)2?x(MA)3+xPb4I13 (x = 0, 0.2, 0.4, and 0.6). At the optimal x‐value of 0.4, the resultant quasi‐2D perovskite film possesses highly orientated crystals, associated with a dense morphology and uniform grain‐size distribution. Consequently, the (BA)1.6(MA)3.4Pb4I13‐based solar cells yield champion efficiencies of 15.44% with NP processing and 16.29% with HC processing, respectively. As expected, the HC‐processed device shows a poor performance reproducibility compared with that of the NP film‐casting method. Moreover, the unsealed device (x = 0.4) displays a better moisture stability with respect to the x = 0 stored in a 65% ± 5% relative humility chamber.  相似文献   

11.
Pseudocapacitors or redox capacitors that synergize the merits of batteries and double‐layer capacitors are among the most promising candidates for high‐energy and high‐power energy storage applications. 2D transition metal carbides (MXenes), an emerging family of pseudocapacitive materials with ultrahigh rate capability and volumetric capacitance, have attracted much interest in recent years. However, MXenes have only been used as negative electrodes as they are easily oxidized at positive (anodic) potential. To construct a high‐performance MXene‐based asymmetric device, a positive electrode with a compatible performance is highly desired. Herein, an ultrafast polyaniline@MXene cathode prepared by casting a homogenous polyaniline layer onto a 3D porous Ti3C2Tx MXene is reported, which enables the stable operation of MXene at positive potentials because of the enlarged work function after compositing with polyaniline, according to the first‐principle calculations. The resulting flexible polyaniline@MXene positive electrode demonstrates a high volumetric capacitance of 1632 F cm?3 and an ultrahigh rate capability with 827 F cm?3 at 5000 mV s?1, surpassing all reported positive electrodes. An asymmetric device is further fabricated with MXene as the anode and polyaniline@MXene as the cathode, which delivers a high energy density of 50.6 Wh L?1 and an ultrahigh power density of 127 kW L?1.  相似文献   

12.
Metal halide perovskite has attracted enhanced interest for its diverse electronic and optoelectronic applications. However, the fabrication of micro‐ or nanoscale crystalline perovskite functional devices remains a great challenge due to the fragility, solvent, and heat sensitivity of perovskite crystals. Here, a strategy is proposed to fabricate electronic and optoelectronic devices by directly growing perovskite crystals on microscale metallic structures in liquid phase. The well‐contacted perovskite/metal interfaces ensure these heterostructures serve as high‐performance field effect transistors (FETs) and excellent photodetector devices. When serving as an FET, the on/off ratio is as large as 106 and the mobility reaches up to ≈2.3 cm2 V?1 s?1. A photodetector is displayed with high photoconductive switching ratio of ≈106 and short response time of ≈4 ms. Furthermore, the photoconductive response is proved to be band‐bending‐assisted separation of photoexcited carriers at the Schottky barrier of the silver and p‐type perovskites.  相似文献   

13.
Preface     
The reliability of GaAs microwave devices is directly related to the integrity of Schottky and ohmic contacts for Schottky barrier devices and metal/semiconductor field effect transistor devices. The interface analysis of these device structures using surface analysis techniques has become extremely important in the study of the degradation of these devices. The research reported here focuses on three different metallic systems, namely Au/In, Au-12 wt.% Ge and Ni/AuGe, for both Schottky and ohmic contacts. The three metallic systems were evaporated onto 〈100;〉- oriented GaAs substrates (ND=3×1017cm-3) in an ultrahigh vacuum system. These samples were thermally aged by keeping them at 150°C for 500h. Current-voltage and capacitance-voltage measurements were made on as-deposited and thermally aged samples. The ideality factor decreased in all the samples. There was an apparent large increase in barrier height in AuGe/GaAs and Ni/AuGe/GaAs Schottky diodes. There was an insignificant change in the contact resistivity of ohmic contacts after thermal aging.The changes in the electrical characteristics of these device structures are explained on the basis of the formation of an oxide layer after thermal aging. A comparison of the Auger depth profiles of the as-deposited and the thermally aged samples substantiates the electrical observations. However, Au/In/GaAs Schottky diodes do not show the existence of an oxide layer at the interface. The out-diffusion of indium to the surface might have removed the oxygen from the interface to result in an Au-GaAs interface in the thermally aged sample. A slight increase in the barrier height of this sample is due to the Au-GaAs interface rather than the In-GaAs interface.  相似文献   

14.
Utilizing spin‐orbit torque (SOT) to switch a magnetic moment provides a promising route for low‐power‐dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gdx(FeCo)1?x by the topological insulator [Bi2Se3 and (BiSb)2Te3] is investigated at room temperature. The switching current density of (BiSb)2Te3 (1.20 × 105 A cm?2) is more than one order of magnitude smaller than that in conventional heavy‐metal‐based structures, which indicates the ultrahigh efficiency of charge‐spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gdx(FeCo)1?x via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy‐efficient and high‐speed spintronic devices.  相似文献   

15.
The interfacial charge effect is crucial for high‐sensitivity organic phototransistors (OPTs), but conventional layered and hybrid OPTs have a trade‐off in balancing the separation, transport, and recombination of photogenerated charges, consequently impacting the device performance. Herein, a novel hybrid‐layered phototransistor (HL‐OPT) is reported with significantly improved photodetection performance, which takes advantages of both the charge‐trapping effect (CTE) and efficient carrier transport. The HL‐OPT consisting of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) as conduction channel, C8‐BTBT:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) bulk heterojunction as photoactive layer, and sandwiched MoO3 interlayer as a charge‐transport interlayer exhibits outstanding photodetection characteristics such as a photosensitivity (Ilight/Idark) of 2.9 × 106, photoresponsivity (R) of 8.6 × 103 A W?1, detectivity (D*) of 3.4 × 1014 Jones, and external quantum efficiency of 3 × 106% under weak light illumination of 32 µW cm?2. The mechanism and strategy described here provide new insights into the design and optimization of high‐performance OPTs spanning the ultraviolet and near infrared (NIR) range as well as fundamental issues pertaining to the electronic and photonic properties of the devices.  相似文献   

16.
Herein we discuss our approach to realizing all electrical spin injection and detection in GaAs. We propose a lateral geometry, with two ferromagnetic electrodes crossing an n-doped GaAs channel. AlO x tunnel barriers are to be used in order to overcome the impedance mismatch and different widths of the two electrodes ensure different coercive fields. We present a detailed theoretical analysis of the expected magnetoresistance. Differences in behavior between lateral and vertical devices, the influence of the applied bias (electric field), and opportunities offered by different measurement geometries were explored. The MBE grown wafer consisted of 100 nm Al0.3Ga0.7As, acting as confinement layer, 100 nm n-doped (4 × l017 cm−3) GaAs, 3 nm n++ GaAs (1021 cm−3), to suppress Schottky barrier formation, and 1.5 nm Al. The Al was oxidized naturally in order to obtain tunnel barriers. By making use of in-situ shadow masks, a 0.1 mm wide channel is defined by covering the rest of the sample by insulating SiO2, followed by deposition of Ta bonding pads. Finally, 500 and 1000 nm wide CoFe electrodes crossing the GaAs channel are obtained by e-beam lithography and sputtering. We show that the IV characteristics of the CoFe/AlO x /GaAs interface are consistent with tunneling as the main injection mechanism. However, the resistance-area (5 × 109 Ω μm2) of our barriers is too high compared to the GaAs conductance (50 Ω square resistance) leading to a strong suppression of magnetoresistance. Further experiments are in progress toward optimizing barrier and channel impedance matching.  相似文献   

17.
Interface engineering to form an interlayer via ion exchange reaction is reported. A FA0.88Cs0.12PbI3 formamidinium (FA) perovskite layer is first prepared, then FAPF6 solution with different concentrations is spin‐coated on top of the perovskite film, which leads to a partial substitution of iodide by PF6? ion. The second phase with nominal composition of FA0.88Cs0.12PbI3?x(PF6)x is grown at the grain boundary, which has island morphology and its size depends on the FAPF6 solution concentration. The lattice is expanded and bandgap is reduced due to inclusion of larger PF6? ions. The power conversion efficiency (PCE) is significantly enhanced from 17.8% to 19.3% as a consequence of improved fill factor and open‐circuit voltage (Voc). In addition, current–voltage hysteresis is reduced. Post‐treatment with FAPF6 reduces defect density and enhances carrier lifetime, which is responsible for the improved photovoltaic performance and reduced hysteresis. The unencapsulated device with post‐treated perovskite film demonstrates better stability than the pristine perovskite, where the initial PCE retains over 80% after 528 h exposure under relative humidity of around 50–70% in the dark and 92% after 360 h under one sun illumination.  相似文献   

18.
The quest for novel deformable image sensors with outstanding optoelectronic properties and large‐scale integration becomes a great impetus to exploit more advanced flexible photodetector (PD) arrays. Here, 10 × 10 flexible PD arrays with a resolution of 63.5 dpi are demonstrated based on as‐prepared perovskite arrays for photosensing and imaging. Large‐scale growth controllable CH3NH3PbI3?xClx arrays are synthesized on a poly(ethylene terephthalate) substrate by using a two‐step sequential deposition method with the developed Al2O3‐assisted hydrophilic–hydrophobic surface treatment process. The flexible PD arrays with high detectivity (9.4 × 1011 Jones), large on/off current ratio (up to 1.2 × 103), and broad spectral response exhibit excellent electrical stability under large bending angle (θ = 150°) and superior folding endurance after hundreds of bending cycles. In addition, the device can execute the functions of capturing a real‐time light trajectory and detecting a multipoint light distribution, indicating that it has widespread potential in photosensing and imaging for optical communication, digital display, and artificial electronic skin applications.  相似文献   

19.
Cesium‐based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open‐circuit voltage (VOC) loss possibly caused by charge recombination. The use of an insulated shunt‐blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3‐xBrx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3‐xBrx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3‐xBrx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3‐xBrx PSCs under continuous 1 sun equivalent illumination over 1000 h.  相似文献   

20.
Metal–semiconductor interfaces, known as Schottky junctions, have long been hindered by defects and impurities. Such imperfections dominate the electrical characteristics of the junction by pinning the metal Fermi energy. Here, a graphene–WSe2 p‐type Schottky junction, which exhibits a lack of Fermi level pinning, is studied. The Schottky junction displays near‐ideal diode characteristics with large gate tunability and small leakage currents. Using a gate electrostatically coupled to the WSe2 channel to tune the Schottky barrier height, the Schottky–Mott limit is probed in a single device. As a special manifestation of the tunable Schottky barrier, a diode with a dynamically controlled ideality factor is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号