首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
The aim of this in vitro study was to compare the efficacies of two different fiber post‐removal systems. Thirty extracted single‐rooted mandibular premolar teeth were used. After RelyX fiber posts were cemented, the teeth were divided into two groups with regard to the post removal techniques: ultrasonic vibration and D.T. Light‐Post removal kit. Residual material, tooth volume changes, working time and micro‐crack formation were assessed using micro‐computed tomography. All data were analyzed using Wilcoxon signed‐rank and Mann–Whitney U tests. There was significantly more tooth root volume change in the ultrasonic group than removal kit group (p < .05). Fiber post removal time for the ultrasonic group was significantly longer than the removal kit group (p < .01).  相似文献   

2.
This study investigated the effects of fumaric acid on push‐out bond strength when applied to dentin surfaces and fiber posts. The root canals of 60 mandibular premolar teeth were instrumented and obturated. After removing two thirds of filling material, teeth were prepared according to six randomized groups (n = 10/group) defined by two fiber post surface treatments (0.7% fumaric acid or 9% hydrofluoric acid) and three dentin conditioning treatments [control (no conditioning); 17% ethylenediamine tetraacetic acid (EDTA); or 0.7% fumaric acid]. After fiber post‐cementation, three 1‐mm thick discs were obtained from each tooth by transverse sectioning, and each disc underwent push‐out bond strength testing. Data were analyzed with a one‐way analyses of variance (anova ) and t tests; p < .05 was considered statistically significant. Failure modes were determined by stereomicroscopy, and the surface characteristics of dentin and fiber posts were observed by scanning electron microscopy. Push‐out bond strength was greater for the group in which the post surface treated with hydrofluoric acid and the dentin surface treated with fumaric acid than the nontreated dentin and hydrofluoric acid‐treated post group (p < .05). There were no significant differences between other comparison pairs (p > .05). A combination of fumaric acid dentin conditioning and hydrofluoric acid fiber post treatment strengthened the bonding ability of fiber posts.  相似文献   

3.
This study evaluated the effect of Er,Cr:YSGG laser on the root canal dentin after luting a fiber post. Twenty‐four bovine teeth roots were prepared using NiTi instruments and filled with Sealer 26 and gutta‐percha. Post spaces were prepared and roots were distributed according to dentin treatment (n = 8): 2.5%NaOCl (group control), Er,Cr:YSGG laser (1.5 W, 20 Hz, 20 s) (group test 1) or 2.5%NaOCl + Er,Cr:YSGG laser (group test 2). Fiber posts were luted using adhesive cement (Rely X U200, 3M) and roots were prepared to confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The morphology of interface, thickness of cement, and the gaps and tags were analyzed. Non‐parametrical data for thickness of cement were submitted to Friedman and Kruskall–Wallis tests (α = 0.05) and parametrical data for gaps to ANOVA (α = 0.05). CLSM of the cement thickness and gaps revealed no significant difference in surface treatment (NaOCl, Er,Cr:YSGG laser and NaOCl + Er,Cr:YSGG laser) (p > .05) and canal thirds (cervical, middle, and apical) (p > 0.05). SEM showed tags and a residual layer of cement adhered to dentin, mainly in laser‐irradiated specimens. The pretreatment of root canal with Er,Cr:YSGG laser previously to luting the fiber post with a self‐adhesive cement did not influence the cement thickness and gaps but affected the dentin interaction.  相似文献   

4.
Morphology, etching patterns, surface modification, and characterization of 2 different fiber posts: Gfp, Glass fiber post; and Cfp, carbon fiber were investigated by SEM analysis, after different surface treatments. Thirty fiber posts, being 15 Gfp and 15 Cfp were divided into a 5 surface treatments (n = 3): C-alcohol 70% (control); HF 4%-immersion in 4% hydrofluoric acid for 1min; H(3) PO(4) 37%-immersion in 37% phosphoric acid for 30s; H(2) O(2) 10%-immersion in 10% hydrogen peroxide for 20 min; H(2) O(2) 24%-immersion in 24% hydrogen peroxide for 10 min. Morphology, etching patterns, surface modification and surface characterization were acessed by SEM analysis. SEM evaluation revealed that the post surface morphology was modified following all treatment when compared with a control group, for both type of reinforced posts. HF seems to penetrate around the fibers of Gfp and promoted surface alterations. The Cfp surface seems to be inert to treatment with HF 4%. Dissolution of epoxy resin and exposure of the superficial fiber was observed in both post groups, regardless the type of reinforcing fiber, H(2) O(2) in both concentrations. Relative smooth surface area was produced by H(3) PO(4) 37% treatment, but with similar features to untreated group. Surface treatment of fiber post is a determinant factor on micromechanical entanglement to resin composite core. Post treatment with hydrogen peroxide resulted strength of carbon and glass/epoxy resin fiber posts to resin composite core.  相似文献   

5.
This study compared the performance of a glass ionomer (GC Gold Label 1, GIC) as a fiber post cementation system for glass fiber posts with a self‐adhesive resin cement (Relyx U200, RUC) and a conventional resin cement system (Scotchbond Muli‐Purpose and Relyx ARC, RAC). Thirty endodontically treated canines were randomly divided in three groups (n = 10), according to the fiber post cementation system: (RAC)—Scotchbond Multi‐Purpose and Relyx X ARC; (RUC)—Relyx U200 and (GIC)—GC Gold Label 1 Luting & Lining. Rhodamine was incorporated into the cementation system prior to the fiber post cementation. After glass fiber post cementation, roots were incubated in artificial saliva for 6 months. After that, specimens from the cervical, middle, and apical thirds of the post space were prepared and analyzed using a push‐out bond strength test and confocal laser microscopy. ANOVA one way and Tukey tests showed that GIC and RUC demonstrated similar push‐out bond strength values, independently of the post space third (p > .05); however, values were greater than those shown by RAC (p < .05). For dentin penetrability, GIC and RUC also had similar results (p > 0.05) and lower than RAC (p < 0.05). Inside the root canal, the cementation system using glass ionomer cement (GC Gold Label 1 Luting & Lining) has similar push‐out bond strength to the self‐adhesive resin cement (Relyx U200) and these were higher than the conventional resin (Relyx ARC), despite its higher dentin penetrability.  相似文献   

6.
The purpose of this study was to evaluate the surface roughness (Ra), and the morphology and composition of filler particles of different composites submitted to toothbrushing and water storage. Disc‐shaped specimens (15 mm × 2 mm) were made from five composites: two conventional (Z100?, and Filtek? Supreme Ultra Universal, 3M), one “quick‐cure” (Estelite ∑ Quick, Tokuyama), one fluoride‐releasing (Beautiful II, Shofu), and one self‐adhering (Vertise Flow, Kerr) composite. Samples were finished/polished using aluminum oxide discs (Sof‐Lex, 3M), and their surfaces were analyzed by profilometry (n = 5) and scanning electron microscopy (SEM; n = 3) at 1 week and after 30,000 toothbrushing cycles and 6‐month water storage. Ra data were analyzed by two‐way analysis of variance and Tukey's test (α = 0.05). Filler particles morphology and composition were analyzed by SEM and X‐ray dispersive energy spectroscopy, respectively. Finishing/polishing resulted in similar Ra for all the composites, while toothbrushing and water storage increased the Ra of all the tested materials, also changing their surface morphology. Beautifil II and Vertise Flow presented the highest Ra after toothbrushing and water storage. Filler particles were mainly composed of silicon, zirconium, aluminum, barium, and ytterbium. Size and morphology of fillers, and composition of the tested composites influenced their Ra when samples were submitted to toothbrushing and water storage.  相似文献   

7.
Tool specimens of hot pressed AlMgB14 were employed in lathe turning tests cutting exterior surface material from 6061 aluminum, 304 stainless steel, Inconel, and concrete at various cutting rates. Performance was measured via analysis of mass change (removal rate), wear mechanisms, surface chemistry (reactivity), and fracture mechanisms. Preliminary results indicate that this new family of ultra‐hard materials exhibits good cutting performance against all four workpiece materials, while combining favorable toughness with an unusual absence of tool heating, leading to minimal wear and anticipation of long life in application for sectioning of ferrous‐based metals and structures such as reinforced concrete containing such metals. The potential value of these new materials for use in disassembly of decommissioned nuclear reactor pressure vessels is discussed.  相似文献   

8.
The aim of this study was to evaluate the combined effect of MTAD and photon‐induced photoacoustic streaming (PIPS) technique on the smear layer removal and the bond strength of glass fiber post. Fifty‐five human mandibular premolars were chosen. After root canal therapy and post space preparation, the teeth were equally divided to five groups according to the methods of root‐dentin pretreatment: G1: distilled water (control); G2: 2.5% NaOCl+17% EDTA; G3: MTAD; G4: PIPS; G5: MTAD+PIPS. One sample was randomly selected from each group, and scanning electron microscope (SEM) was used to observe the microscopic morphology of the coronal, middle and apical level of the root‐dentin. The remaining ten samples from each group were glued to glass fiber posts, and the bond strength was assessed by push‐out test. SEM evaluation showed that the most complete smear layer removal was found in MTAD + PIPS group, especially in coronal third. Push‐out test results exhibited that there was a statistically significant interaction between the experimental groups and root canal third (p < .0005). Significant differences could be found among five groups (p < .05): G5 > G4 > G3 > G2 > G1. G5 had the highest bond strength. In conclusion, post space pretreatments with MTAD or PIPS technique can significantly remove smear layer and improve the bond strength of glass fiber post, and combination of them works best.  相似文献   

9.
The evolution of hydrogen from many hydrated cryo‐preserved soft materials under electron irradiation in the transmission electron microscope can be observed at doses of the order of 1000 e nm?2 and above. Such hydrogen causes artefacts in conventional transmission electron microscope or scanning transmission electron microscopy (STEM) imaging as well as in analyses by electron energy‐loss spectroscopy. Here we show that the evolution of hydrogen depends on specimen thickness. Using wedge‐shaped specimens of frozen‐hydrated Nafion, a perfluorinated ionomer, saturated with the organic solvent DMMP together with both thin and thick sections of frozen‐hydrated porcine skin, we show that there is a thickness below which hydrogen evolution is not detected either by bubble observation in transmission electron microscope image mode or by spectroscopic analysis in STEM electron energy‐loss spectroscopy mode. We suggest that this effect is due to the diffusion of hydrogen, whose diffusivity remains significant even at liquid nitrogen temperature over the length scales and time scales relevant to transmission electron microscopy analysis of thin specimens. In short, we speculate that sufficient hydrogen can diffuse to the specimen surface in thin sections so that concentrations are too low for bubbling or for spectroscopic detection. Significantly, this finding indicates that higher electron doses can be used during the imaging of radiation‐sensitive hydrated soft materials and, consequently, higher spatial resolution can be achieved, if sufficiently thin specimens are used in order to avoid the evolution of hydrogen‐based artefacts.  相似文献   

10.
Scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the “k‐ratio” (unknown/standard) measurement protocol development for electron‐excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X‐ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high‐throughput silicon drift detector energy dispersive X‐ray spectrometer (SDD‐EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X‐ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. SCANNING 35: 141‐168, 2013. 1 Published 2012 Wiley Periodicals, Inc.  相似文献   

11.
The aim of this study was to evaluate the cyclic fatigue resistance of Dia‐X, WaveOne Gold and One Curve files in a water bath at intracanal temperature (35°C). Thirty‐nine instruments Dia‐X, WaveOne Gold, and One Curve systems (n = 13) were tested in an artificial canal with a curvature angle of 60° and a radius of 3 mm. A water bath setup at a temperature of 35°C was used to simulate the intracanal temperature and time to fracture (TTF) as seconds was recorded. The mean data were analyzed statistically using one‐way ANOVA, and post hoc Tukey test (p = .05). The fractured surface of the instruments was examined with scanning electron microscopy (SEM) and chemical composition of the instruments were investigated with energy dispersive X‐ray spectroscopy (EDS). Statistically significant differences were detected in TTF values of all the systems as follows: One Curve > WaveOne Gold > Dia‐X (p < .05). One Curve instruments demonstrated the highest TTF values in all the tested instruments. The EDS microanalysis revealed similar NiTi composition of on the surface of One Curve, WaveOne Gold, and Dia‐X instruments. The novel manufacturing process, including C‐wire heat treatment and the variable cross‐section of the One Curve files, could be the main factors affecting the fatigue life of the instruments.  相似文献   

12.
Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X‐Ray diffraction (XRD) and Energy dispersive X‐ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal‐Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel‐dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Carbon fiber reinforced aluminum laminates (CARALL) are one of the aluminum based Fiber metal laminates (FMLs) which, due to their high strength to weight ratio and good impact resistance are greatly replacing aluminum alloys in aircraft structures. In this research work, interlaminate shear strength of Vacuum assisted resin transfer molding (VARTM) manufactured CARALL has been investigated. Numerical simulation model incorporated with real time material data has been developed to predict the delamination behavior of CARALL laminates. Standard CARALL specimens with different surface morphologies were prepared by electric discharge machining, mechanical, chemical and electrochemical surface treatments. T-peel tests were carried out according to standard ASTM D1876-08 to find out inter laminate shear strength. FMLs made out of mechanically, chemically and electrochemically cleaned metal sheets depicted high interlaminate shear strength. SEM micrographs of failed surfaces verify the high adhesive strength of epoxy. Developed numerical simulation model accurately predicts the delamination behavior of CARALL as observed during experimentation.  相似文献   

14.
Fourier transform‐infrared reflectance microspectroscopy has been used extensively for the examination of coatings on non‐planar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper described the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters that require optimisation in order to obtain reliable data. Several applications of the technique were discussed including determination of lubricant load on 12.7mm steel ball bearings and the examination of degraded lubricant on post‐mortem specimens. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Aluminum foam with its excellent physical and mechanical characteristics is a lightweight metallic material used with good quality in vehicle bumpers, internal shock absorbers on planes, as materials for vessel joints etc. On the contrary, when aluminum foam is used without sufficient investigation, there is the likelihood of damage or destruction of the machine or mechanical structure, and in extreme case it may cause to human casualties. This study aims to analyze the characteristics of adhesive structures with aluminum foam for the closed-type aluminum foam used primarily as shock absorbers. The fatigue analyses of the DCB test specimens at mode III with aluminum foam are verified through a fatigue experiment. As the analysis results, test specimen models with the thicknesses (t) of 35 mm, 45 mm and 55 mm showed the peak load occurrence approximately after the progress from 0 to 50 cycles. And afterwards the load gradually decreased as the cycles increased. The peak loads for each DCB test specimens were ±0.80 kN for the specimen thickness(t) of 35 mm, ±0.98 kN for the specimen thickness(t) of 45 mm and ±1.18 kN for the specimen thickness(t) of 55 mm. It is also shown that the peak load occurring on the specimen increased as specimen thickness increased. These study results are compared with the specimen thickness of 35 mm model as the basis. When the specimen thickness is increased as much as 10 mm, the peak load is increased approximately 1.25 times. When the specimen thickness is also increased as much as 20 mm, the peak load is increased 1.5 times. The analysis data and the real experiment data showed similar results each other. Therefore, it can be thought that the analysis data is applicable in real field. And it is estimated that the mechanical characteristics of the DCB test specimen at mode III during the fatigue load conditions can be systematically and efficiently analyzed.  相似文献   

16.
Vibratory cavitation erosion with vibratory and stationary specimens is studied for three materials in tap water at room temperature. The separation distance is varied from 0.127 to 6.096 mm. Test materials were commercially pure lead, soft (1100-O) aluminum and type 316 stainless steel. The double-horn amplitude was 58.4 μm (2.3 × 10?3in) in a 20 kHz facility. The total duration of all tests was 10 min.The weight loss of both vibratory and stationary specimens of course depends on materials. The weight loss of stationary specimens is best correlated as a function of the reciprocal of the separation distance.  相似文献   

17.
We present the use of (1) dark‐field inline electron holography for measuring the structural strain, and indirectly obtaining the composition, in a wurtzite, 4‐nm‐thick InAlGaN epilayer on a AlN/GaN/AlN/GaN multinano‐layer heterosystem, and (2) valence electron energy‐loss spectroscopy to study the bandgap value of five different, also hexagonal, 20–50‐nm‐thick InAlGaN layers. The measured strain values were almost identical to the ones obtained by other techniques for similarly grown materials. We found that the biaxial strain in the III‐N alloys lowers the bandgap energy as compared to the value calculated with different known expressions and bowing parameters for unstrained layers. By contrast, calculated and experimental values agreed in the case of lattice‐matched (almost unstrained) heterostructures.  相似文献   

18.
The aims were to compare the physico‐chemical properties (zeta‐potential, wettability, surface free energy) of stereolithography materials (STL) (Photopolymer, Accura) to dentine and to evaluate the potential of each material to develop Enterococcus faecalis biofilm on their respective surfaces. Eighteen samples of each test material (Photopolymer, Accura, dentine) were employed (total n = 54) and sectioned to 1 mm squares (5 mm x 5 mm) (n = 15) or ground into a powder to measure zeta‐potential (n = 3). The zeta‐potential of the powder was measured using the Nano‐Zetasizer technique. The contact angle (wettability, surface free energy tests) were measured on nine samples using goniometer. The biofilm attachment onto the substrate was assessed on the samples of each material using microscope and image processing software. The data were compared using one‐way ANOVA with Dunnett post‐hoc tests at a level of significance P ≤ 0.05. Both STL materials showed similar physico‐chemical properties to dentine. The materials and dentine had negative charge (Accura: ?23.7 mv, Photopolymer: ?18.8 mv, dentine: ?9.11 mv). The wettability test showed that all test materials were hydrophilic with a contact angle of 47.5°, 39.8°, 36.1° for Accura, Photopolymer and dentine respectively, and a surface free energy of 46.6, 57.7, 59.6 mN/m for Accura, Photopolymer and dentine, respectively. The materials and dentine proved suitable for attachment and growth of E. faecalis biofilm with no statistical differences (P > 0.05). Stereolithography materials show similar physico‐chemical properties and growth of E. faecalis biofilm to dentine. Therefore, they may be an alternative to tests requiring dentine.  相似文献   

19.
In this article, wear and friction characteristics of a magnetorheological (MR) fluid were studied under different magnetic fields. Using a pin-on-disc tribometer, the wear loss and friction coefficient were obtained with and without a magnetic field. The friction and wear of three typical materials under magnetic field were investigated at various normal loads and rotating speeds. After the wear tests, the worn surfaces of specimens were observed using a scanning electron microscope (SEM) in order to investigate the wear mechanisms, and the contacting surfaces were analyzed by energy-dispersive X-ray spectroscopy (EDS) to investigate the variation of elemental composition on the worn surface. Test results showed that the MR fluid exhibits better tribological characteristics under a magnetic field compared to the case without a magnetic field. The general morphology of the MR particles and wear debris was observed to assist with the analysis of friction and wear. The SEM micrographs and EDS spectra of the worn surfaces showed that the predominant wear mechanism in the case of the steel and brass specimens was abrasive wear by asperities and MR particles on the worn surfaces, whereas a mixed wear mechanism that included adhesive wear and abrasive wear was observed in the case of the aluminum specimen.  相似文献   

20.
The purpose of this study was to evaluate the micro‐tensile bond strength (μTBS) of dentin bonding agents containing different ratios of nano‐sized hydroxyapatite fillers (HA). X‐ray diffraction analysis was used for characterization, and scanning electron microscope (SEM) analysis was used to determine the HA particle size after that HA were mixed a bonding agents without filler. Dentin bonding agents were divided into four groups according to addition of different ratios of nano‐sized hydroxyapatite fillers as 2% HA, 5% HA, 7% HA, and no‐filler control group. The teeth (n = 32) were sectioned with a low‐speed diamond blade under water cooling to expose the mid‐coronal dentin. Following the bonding application, restorations were applied incrementally. Each tooth was cut on the x and y axis, and each specimen was fixed to a testing device and stressed until failure occurred. The debonded specimens were examined under 250× magnification without a coating layer at 2.00 kV using a SEM to determine failure patterns. μTBS data were analyzed using a anova and Tukey's post hoc test. The failure mode data were analyzed using the Chi‐Square test. The maximum mean value of μTBS was in the 7% HA group, while the minimum mean value of μTBS was observed in the control group. 7% HA group was statistically significant and higher than other groups while there were no significant differences between the control, 2% HA, and 5% HA groups. According to SEM analysis, fracture analysis revealed that the mixed fracture type was seen more often than the other fracture types. The particle size and amount of HA fillers added to the adhesive resin seem to affect the success of the bond strength to the dentin. Adding different ratio nano‐sized HA fillers to the adhesive resin contributed positively to the immediate μTBS values in the dentin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号