首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.  相似文献   

2.
A detailed comparison of flow boiling heat transfer results in a stainless steel tube of 1.1 mm internal diameter with results of a three-zone flow model are presented in this paper. The working fluid is R134a. Other parameters were varied in the range: mass flux 100–600 kg/m2 s; heat flux 16–150 kW/m2 and pressure 6–12 bar.The experimental results demonstrate that the heat transfer coefficient increases with heat flux and system pressure, but does not change with vapour quality when the quality is less than about 50% for low heat and mass flux values. The effect of mass flux is observed to be insignificant. For vapour quality values greater than 50% and at high heat flux values, the heat transfer coefficient does not depend on heat flux and decreases with vapour quality. This could be caused by dryout. The three-zone evaporation model predicts the experimental results fairly well, especially at relatively low pressure. However, the dryout region observed at high quality is highly over-predicted by the model. The sensitivity of the performance of the model to the three optimised parameters (confined bubble frequency, initial film thickness and end film thickness) and some preliminary investigation relating the critical film thickness for dryout to measured tube roughness are also discussed.  相似文献   

3.
《传热工程》2012,33(3):288-301
Abstract

Wettability plays an important role during flow boiling inside micro and mini channels. The present work focuses on the flow boiling heat transfer characteristics inside copper minitube (inner diameter of 3?mm) coated internally to render the inside surface nearly hydrophobic. Electroless Galvanic Deposition technique is employed for hydrophobic coating inside the copper tube. Both single phase heat transfer and two-phase flow boiling heat transfer and pressure drop characteristics were investigated in regular and internally coated hydrophobic copper minitubes. The experiments were performed with deionized water as a working fluid and the mass flux was varied from 100 to 650?kg/m2s. The two-phase heat transfer characteristics was observed to be both functions of mass flux as well as heat flux. The two phase heat transfer has been observed to be augmented due to the wettability within the tubes. The two-phase pressure drop has also been observed to increase when compared to the regular, uncoated tube; however, the proportional increment is lower than the augmentation achieved in two-phase heat transfer. The enhanced heat transfer effects observed have been explained on the basis of wetting physics.  相似文献   

4.
This study investigates the heat transfer characteristics and flow pattern for the dielectric fluid HFE-7100 within multiport microchannel heat sinks with hydraulic diameters of 480 μm and 790 μm. The test results indicate that the heat transfer coefficient for the smaller channel is generally higher than that of the larger channel. It is found that the heat transfer coefficients are roughly independent of heat flux and vapor quality for a modest mass flux ranging from 200 to 400 kg m?2 s?1 at a channel size of 480 μm and there is a noticeable increase of heat transfer coefficient with heat flux for hydraulic diameters of 790 μm. The difference arises from flow pattern. However, for a smaller mass flux of 100 kg m?2 s?1, the presence of flow reversal at an elevated heat flux for hydraulic diameters of 480 μm led to an appreciable drop of heat transfer coefficient. For a larger channel size of 790 μm, though the flow reversal is not observed at a larger heat flux, some local early partial dryout still occurs to offset the heat flux contribution and results in an unconceivable influence of heat flux. The measured heat transfer coefficients for hydraulic diameters of 790 μm are well predicted by the Cooper correlation. However, the Cooper correlation considerably underpredicts the test data by 35–85% for hydraulic diameters of 480 μm. The influence of mass flux on the heat transfer coefficient is quite small for both channels.  相似文献   

5.
Solar parabolic trough collector (PTC) is the best recognized and commercial‐industrial‐scale, high temperature generation technology available today, and studies to assess its performance will add further impetus in improving these systems. The present work deals with numerical and experimental investigations to study the performance of a small‐scale solar PTC integrated with thermal energy storage system. Aperture area of PTC is 7.5 m2, and capacity of thermal energy storage is 60 L. Paraffin has been used as phase change material and water as heat transfer fluid, which also acts as sensible heat storage medium. Experiments have been carried out to investigate the effect of mass flow rate on useful heat gain, thermal efficiency and energy collected/stored. A numerical model has been developed for the receiver/heat collecting element (HCE) based on one dimensional heat transfer equations to study temperature distribution, heat fluxes and thermal losses. Partial differential equations (PDE) obtained from mass and energy balance across HCE are discretized for transient conditions and solved for real time solar flux density values and other physical conditions of the present system. Convective and radiative heat transfers occurring in the HCE are also accounted in this study. Performance parameters obtained from this model are compared with experimental results, and it is found that agreement is good within 10% deviations. These deviations could be due to variations in incident solar radiation fed as input to the numerical model. System thermal efficiency is mainly influenced by heat gain and solar flux density whereas thermal loss is significantly influenced by concentrated solar radiation, receiver tube temperature and heat gained by heat transfer fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Cheol Huh  Moo Hwan Kim 《传热工程》2013,34(8-9):730-737
The boiling heat transfer and two-phase pressure drop of water in a microscale channel were experimentally investigated. The tested horizontal rectangular microchannel had a hydraulic diameter of 100 μ m and length of 40 mm. A series of microheaters provided heat energy to the working fluid, which made it possible to control and measure the local thermal conditions in the direction of the flow. Both the microchannel and microheaters were fabricated using a micro-electro-mechanical systems (MEMS) technique. Flow patterns were obtained from real-time flow visualizations made during the flow boiling experiments. Tests were performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes from 200 to 500 kW/m2. The effects of the mass flux and vapor quality on the local flow boiling heat transfer coefficient and two-phase frictional pressure gradient were studied. The evaluated experimental data were compared with existing correlations. The experimental heat transfer coefficients were nearly independent of the mass flux and vapor quality. Most of the existing correlations did not provide reliable heat transfer coefficient predictions for different vapor quality values, nor could they predict the two-phase frictional pressure gradient except under some limited conditions.  相似文献   

7.
Flow boiling heat transfer of R-134a refrigerant in a circular mini-channel, 600 mm long with a diameter of 1.75 mm, is investigated experimentally in this study. The test section is a stainless steel tube placed horizontally. Flow pattern and heat transfer coefficient data are obtained for a mass flux range of 200–1000 kg/m2 s, a heat flux range of 1–83 kW/m2 and saturation pressures of 8, 10, and 13 bar. Five different flow patterns including slug flow, throat-annular flow, churn flow, annular flow and annular-rivulet flow are observed and the heat transfer coefficient data for different flow patterns are presented. The heat transfer coefficient increases with increasing heat flux but is mostly independent of mass flux and vapour quality. In addition, it is indicated from the experiments that the higher the saturation pressure, the lower is the heat transfer coefficient. Comparisons of the present data with the existing correlations are also presented.  相似文献   

8.
Experiments on transition and flow boiling heat transfer with refrigerant R114 inside a horizontal tube were performed at bubble flow, critical heat flux and in the transition region between bubble flow and film boiling at mass fluxes between 1200 and 4000 kg/m2 s and in the pressure range between 5 and 15 bar. In comparison with pool boiling bubble flow heat transfer depends essentially on the mass flow rates and on the vapor quality. The critical heat flux depends less on the temperature difference than in pool boiling heat transfer and exhibits a maximal and a minimal value as a function of the pressure. The critical heat flux increases with mass flow rate as already shown by Collier. In the region of transition boiling the heat flux over the difference between wall and saturation temperature approaches a horizontal curve. Therefore in this region an evaporator may always be operated under stable conditions and burn out does not occur.  相似文献   

9.
The pressure drop and boiling heat transfer characteristics of steam-water two-phase flow were studied in a small horizontal helically coiled tubing once-through steam generator. The generator was constructed of a 9-mm ID 1Cr18Ni9Ti stainless steel tube with 292-mm coil diameter and 30-mm pitch. Experiments were performed in a range of steam qualities up to 0.95, system pressure 0.5-3.5 MPa, mass flux 236-943 kg/m2s and heat flux 0-900 kW/m2. A new two-phase frictional pressure drop correlation was obtained from the experimental data using Chisholm’s B-coefficient method. The boiling heat transfer was found to be dependent on both of mass flux and heat flux. This implies that both the nucleation mechanism and the convection mechanism have the same importance to forced convective boiling heat transfer in a small horizontal helically coiled tube over the full range of steam qualities (pre-critical heat flux qualities of 0.1-0.9), which is different from the situations in larger helically coiled tube where the convection mechanism dominates at qualities typically >0.1. Traditional single parameter Lockhart-Martinelli type correlations failed to satisfactorily correlate present experimental data, and in this paper a new flow boiling heat transfer correlation was proposed to better correlate the experimental data.  相似文献   

10.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

11.
ABSTRACT

In this study, subcooled flow boiling was investigated in horizontal microtubes. Experiments were conducted using deionized water as the working fluid over a mass flux range of 4000–7000 kg m?2s?1 in microtubes with inner and outer diameters of ~600 and ~900 μm, respectively. Microtubes with lengths of 3, 6, and 12 cm were tested to clarify the effect of heated length on flow boiling heat transfer and pressure drop characteristics. A force analysis related to two-phase flow was conducted to understand the effect of forces on bubble dynamics. Pressure drop and heat transfer data in flow boiling were acquired. Experimental heat flux data were compared with partial boiling heat flux correlations, and good agreements were obtained. Pressure drop was larger in longer microtubes in comparison to shorter ones, while higher heat fluxes were obtained in shorter microtubes at the same wall superheat. Two-phase heat transfer coefficient increased with the microtube length due to lower temperature difference between wall temperature and bulk fluid temperature in longer microtubes. Higher heat fluxes achieved in shorter microtubes at the same wall superheat imply higher critical heat fluxes in shorter microtubes.  相似文献   

12.
A study of post-dryout heat transfer was performed with a directed heated smooth tube and rifled tubes using vertical R-134a up-flow to investigate the heat transfer characteristics in the post-dryout region. Three types of rifled tube having different rib height and width were used to examine the effects of rib geometry and compare with the smooth tube, using a mass flux of 70–800 kg/m2 s and a pressure of 13–24 bar (corresponding to an approximate water pressure of 80–140 bar). Wall temperature distribution in all tubes was strongly dependent on pressure and mass flux. Wall temperatures of the rifled tubes in the post-dryout region were much lower than for the smooth tube at same conditions. This was attributed to swirl flow caused by the rib. Thus, the thermal non-equilibrium, which is usually present in the post-dryout region, was lowered. The empirical correlation of heat transfer in the smooth tube of the post-dryout region was obtained. The heat transfer correlation for rifled tubes was also obtained as a function of rib height and width with the modification of the smooth tube correlation.  相似文献   

13.
This paper describes an experimental setup for the investigation of two-phase heat transfer inside microchannels and reports local heat transfer coefficients measured during flow boiling of HFC-245fa in a 0.96-mm-diameter single circular channel. The test runs have been performed during vaporization at around 1.85 bar, corresponding to 31°C saturation temperature. As a peculiar characteristic of the present technique, the heat transfer coefficient is not measured by imposing the heat flux; instead, the boiling process is governed by controlling the inlet temperature of the heating secondary fluid. In the data, mass velocity ranges between 200 and 400 kg m?2 s?1, with heat flux varying from 5 to 85 kW m?2 and vapor quality from 0.05 up to 0.8. Since these data are not measured at uniform heat flux conditions, a proper analysis is performed to enlighten the influence of the different parameters and to compare the present data to those obtained when the heat flux is imposed. Besides, the test runs have been carried out in a double mode: by increasing the water-to-refrigerant temperature difference and by decreasing it. Finally, the experimental data are compared to models available in the literature for predicting the heat transfer coefficients inside microchannels.  相似文献   

14.
This paper presents an overview of the use of flow visualization in micro- and mini-channel geometries for the development of pressure drop and heat transfer models during condensation of refrigerants. Condensation flow mechanisms for round, square, and rectangular tubes with hydraulic diameters in the range of 1–5 mm for 0 < x < 1, and 150 kg/m2-s and 750 kg/m2-s were recorded using unique experimental techniques that permit flow visualization during the condensation process. The effect of channel shape and miniaturization on the flow regime transitions was documented. The flow mechanisms were categorized into four different flow regimes: intermittent flow, wavy flow, annular flow, and dispersed flow. These flow regimes were further subdivided into several flow patterns within each regime. It was observed that the intermittent and annular flow regimes become larger as the tube hydraulic diameter is decreased, and at the expense of the wavy flow regime. These maps and transition lines can be used to predict the flow regime or pattern that will be established for a given mass flux, quality, and tube geometry. These observed flow mechanisms, together with pressure drop measurements, are being used to develop experimentally validated models for pressure drop during condensation in each of these flow regimes for a variety of circular and noncircular channels with 0.4 < Dh < 5 mm. These flow regime-based models yield substantially better pressure drop predictions than the traditionally used correlations that are primarily based on air-water flows for large diameter tubes. Condensation heat transfer coefficients were also measured using a unique thermal amplification technique that simultaneously allows for the accurate measurement of the low heat transfer rates over small increments of refrigerant quality and high heat transfer coefficients characteristic of microchannels. Models for these measured heat transfer coefficients are being developed using the documented flow mechanisms and the corresponding pressure drop models as the basis.  相似文献   

15.

Within the range of pressures from 23 to 30 MPa, mass velocities from 600 to 1200 kg/(m2s), and heat fluxes from 200 to 600 kW/m2, experiments have been performed for an investigation on heat transfer to supercritical water in inclined upward smooth tubes with an inner diameter of 26 mm and an inclined angle of 20° from the horizon. The results indicated that heat transfer characteristics of supercritical water are not uniform along the circumference of the inclined tube. An increase in the mass velocity of the working fluid can decrease and even eliminate the non-uniformity. Properties of supercritical fluid acutely vary with the temperature near the pseudocritical point. While the ratio of the mass velocity to the heat flux exceeded 2.16 kg/(kWs), heat transfer enhancement occurred near the pseudocritical point; conversely, heat transfer deterioration occurred while the ratio of the mass velocity to the heat flux was lower than 2.16 kg/(kWs). As the pressure increased far from the critical pressure, the amount of deterioration decreased. Correlations of heat transfer coefficients of the forced-convection heat transfer on the top and bottom of the tube have been provided, and can be used to predict heat transfer coefficient of spirally water wall in supercritical boilers.  相似文献   

16.
In this study, an external melt ice‐on‐coil thermal storage was studied and tested over various inlet conditions of secondary fluid—glycol solution—flow rate and temperature in charging process. Experiments were conducted to investigate the effect of inlet conditions of secondary fluid and validate the numerical model predictions on ice‐on‐coil thermal energy storage system. The total thermal storage energy and the heat transfer rate in the system were investigated in the range of 10 l min ?1?V??60 l min ?1. A new numerical model based on temperature transforming method for phase change material (PCM) described by Faghri was developed to solve the problem of the system consisting of governing equations for the heat transfer fluid, pipe wall and PCM. Numerical simulations were performed to investigate the effect of working conditions of secondary fluid and these were compared with the experimental results. The numerical results verified with experimental investigation show that the stored energy rises with increasing flow rate a decreasing tendency. It is also observed that the inlet temperature of the fluid has more influence on energy storage quantity than flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
An experiment for heat transfer of water flowing in a vertical rifled tube was conducted at subcritical and supercritical pressure. The main purpose is to explore the heat transfer characteristics of the new-type rifled tube at low mass flux. Operating conditions included pressures of 12–30 MPa, mass flux of 232–1200 kg/(m2 s), and wall heat fluxes of 133–719 kW/m2. The heat transfer performance and wall temperature distribution at various operating conditions were captured in the experiment. In the present paper, the heat transfer mechanism of the rifled tube was analyzed, the effects of pressure, wall heat flux and mass flux on heat transfer were discussed, and corresponding empirical correlations were also presented. The experimental results exhibit that the rifled tube has an obvious enhancement in heat transfer, even at low mass flux. In comparison with a smooth tube, the rifled tube efficiently prevents Departure from Nucleate Boiling (DNB) and delays dryout at subcritical pressure, and also improves the heat transfer of supercritical water remarkably, especially near pseudo-critical point. An increase in pressure or wall heat flux impairs the heat transfer at both subcritical and supercritical pressure, whereas the increasing mass flux has a contrary effect.  相似文献   

18.
ABSTRACT

This paper presents an experimental study on R1234yf flow boiling inside a mini microfin tube with an inner diameter at the fin tip of 2.4 mm. R1234yf is a new refrigerant with an extremely low global warming potential (GWP <1), proposed as a possible substitute for the common R134a, whose GWP is about 1300. The mass flux was varied between 375 and 940 kg m?2 s?1, heat flux from 10 to 50 kW m?2, and vapor quality from 0.1 to 1. The saturation temperature at the inlet of the test section was kept constant and equal to 30°C. The wide range of operative test conditions permitted highlighting the effects of mass flux, heat flux, and vapor quality on the thermal and hydraulic behavior during the flow boiling mechanism inside such a mini microfin tube. The results show that at low heat flux the phase-change process is mainly controlled by two-phase forced convection, and at high heat flux by nucleate boiling. The two-phase frictional pressure drop increases with increasing both mass velocity and vapor quality. Dry-out was observed only at the highest heat flux, at vapor qualities of around 0.94–0.95.  相似文献   

19.
Within the pressure range of 9–28 MPa, mass velocity range of 600–1 200 kg/(m2·s), and heat flux range of 200–500 kW/m2, experiments were performed to investigate the heat transfer to water in the inclned upward internally ribbed tube with an inclined angle of 19.5 degrees, a maximum outer diameter of 38.1 mm, and a thickness of 7.5 mm. Based on the experiments, it was found that heat transfer enhancement of the internally ribbed tube could postpone departure from nucleate boiling at the sub-critical pressure. However, the heat transfer enhancement decreased near the critical pressure. At supercritical pressure, the temperature difference between the wall and the fluid increased near the pseudo-critical temperature, but the increase of wall temperature was less than that of departure from nucleate boiling at sub-critical pressure. When pressure is closer to the critical pressure, the temperature difference between the wall and the fluid increased greatly near the pseudo-critical temperature. Heat transfer to supercritical water in the inclined upward internally ribbed tube was enhanced or deteriorated near the pseudo-critical temperature with the variety of ratio between the mass velocity and the heat flux. Because the rotational flow of the internal groove reduced the effect of natural convection, the internal wall temperature of internally ribbed tube uniformly distributed along the circumference. The maximum internal wall temperature difference of the tube along the circumference was only 10 degrees when the fluid enthalpy exceeded 2 000 J/g. Considering the effect of acute variety of the fluid property on heat transfer, the coreelation of heat transfer coefficient on the top of the internally ribbed tube was provided. Translated from Proceedings of CSEE, 2005, 25(16): 90–95 [译自: 中国电机工程学报]  相似文献   

20.
In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2~0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号