首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection of electrode for GTA‐Underwater Welding Reproducible good weld quality and economical benefit of underwater‐welding require a complete automation. For this purpose Gas Tungsten Arc‐welding (GTA or TIG) offers numerous advantages, especially for the root and the following hot pass run. Disadvantages of GTA‐welding are the low weld deposit rate and the limited lifetime of the tungsten electrode. Already small wear damages cause wide alterations of the arc under high surrounding pressure, so that a suited choice of the electrode enables to increase the productivity considerably. Therefore the influence of the electrode features on welding process, arc stability, arc ignition, weld geometry and electrode wear has been investigated. For quick and elementary selection of electrode an assessment catalogue was elaborated.  相似文献   

2.
Properly cut sheets can be converted into complex 3D structures by three basic operations including folding, bending, and pasting to render new functions. Folding and bending are extensively employed in crumpling, origami, and pop‐up fabrications for 3D structures. Pasting joins different parts of a material together, and can create new geometries that are fundamentally unattainable by folding and bending. However, it has been much less explored, likely due to limited choice of weldable thin film materials and residue‐free glues. Here it is shown that graphene oxide (GO) paper is one such suitable material. Stacked GO sheets can be readily loosened up and even redispersed in water, which upon drying, restack to form solid structures. Therefore, water can be utilized to heal local damage, glue separated pieces, and release internal stress in bent GO papers to fix their shapes. Complex and dynamic 3D GO architectures can thus be fabricated by a cut‐and‐paste approach, which is also applicable to GO‐based hybrid with carbon nanotubes or clay sheets.  相似文献   

3.
Double‐sided arc welding process powered by a single supply is a type of novel high‐production process. In comparison with the conventional single‐sided arc welding, this process has remarkable advantages in enhancing penetration, minimizing distortion and improving welding production. In this paper, a three‐dimensional steady numerical model is developed for the heat transfer and fluid flow in plasma arc (PA)–gas tungsten arc (GTA) double‐sided keyhole welding process. The model considers the surface tension gradient, electromagnetic force and buoyancy force. A CCD camera is used to observe the size and shape of the keyhole and weld pool. The acquired images are analysed through image processing to obtain the surface diameters of the keyhole on the two sides. A double‐V‐shaped keyhole geometry is then proposed and its characteristic parameters are derived from the images and cross‐section of weld bead. In the numerical model, the keyhole cavum within the weld pool is treated as a whole quality, whose temperature is fixed at the boiling point of the workpiece material. The heat exchange between the keyhole and weld pool is treated as an interior boundary of the workpiece. Based on the numerical model, the distributions of the fluid flow and temperature field are calculated. A comparison of cross‐section of the weld bead with the experimental result shows that the numerical model's accuracy is reasonable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The integration of swellable metal–organic frameworks (MOFs) into polymeric composite films is a straightforward strategy to develop soft materials that undergo reversible shape transformations derived from the intrinsic flexibility of MOF crystals. However, a crucial step toward their practical application relies on the ability to attain specific and programmable actuation, which enables the design of self‐shaping objects on demand. Herein, a chemical etching method is demonstrated for the fabrication of patterned composite films showing tunable self‐folding response, predictable and reversible 2D‐to‐3D shape transformations triggered by water adsorption/desorption. These films are fabricated by selective removal of swellable MOF crystals allowing control over their spatial distribution within the polymeric film. Upon exposure to moisture, various programmable 3D architectures, which include a mechanical gripper, a lift, and a unidirectional walking device, are generated. Remarkably, these 2D‐to‐3D shape transformations can be reversed by light‐induced desorption. The reported strategy offers a platform for fabricating flexible MOF‐based autonomous soft mechanical devices with functionalities for micromanipulation, automation, and robotics.  相似文献   

5.
This paper describes a way to improve the microstructure and mechanical properties of welding seams by in situ and conventional post‐weld heat treatments for laser beam welding of the Ti–45Al–5Nb–0.2C–0.2B alloy. The seams are crack‐free with reduced longitudinal residual stress and higher elongation to fraction after post‐weld heat treatment. The welding zone consists of α2 after welding, transforms to a massive γ during in situ post‐weld heat treatment, and finally forms a convoluted microstructure after conventional heating. The phase composition across the welding zone is discussed.  相似文献   

6.
Al‐5086 H32 plates with a thickness of 3 mm were friction stir butt‐welded using different welding speeds at a tool rotational speed of 1600 rpm. The effect of welding speed on the weld performance of the joints was investigated by conducting optical microscopy, microhardness measurements and mechanical tests (i.e. tensile and bend tests). The effect of heat input during friction stir welding on the microstructure, and thus mechanical properties, of cold‐rolled Al‐ 5086 plates was also determined. The experimental results indicated that the maximum tensile strength of the joints, which is about 75 % that of the base plate, was obtained with a traverse speed of 200 mm/min at the tool rotational speed used, e.g. 1600 rpm, and the maximum bending angle of the joints can reach 180o. The maximum ductility performance of the joints was, on the other hand, relatively low, e.g. about 20 %. These results are not unexpected due to the loss of the cold‐work strengthening in the weld region as a result of the heat input during welding, and thus the confined plasticity within the stirred zone owing to strength undermatching. Higher joint performances can also be achieved by increasing the penetration depth of the stirring probe in butt‐friction stir welding of Al‐5086 H32 plates.  相似文献   

7.
This paper is devoted to the experimental and numerical assessment of residual stresses created by welding in the region surrounding the weld toe of tubular K‐shaped joints (i.e. region most sensitive to fatigue cracking). Neutron‐diffraction measurements were carried out on K‐joints cut from large‐scale truss beams previously subjected to high cycle fatigue. Tri‐axial residual stresses in the transverse, longitudinal and radial direction were obtained from the weld toe as a function of the depth in the thickness of the tube wall. In addition, thermomechanical analyses were performed in three‐dimensional using ABAQUS and MORFEO finite element codes. Experimental and numerical results show that, at and near the weld‐toe surface, the highest residual stresses are critically oriented perpendicularly to the weld direction, and combined with the highest externally applied stresses. Based on a systematic study on geometric parameters, analytical residual stress distribution equations with depth are proposed.  相似文献   

8.
In this paper, the effects of post‐weld heat treatment on modification of microstructures and mechanical properties of friction stir welded and gas metal arc welded AA6061‐O plates were compared with each other. Gas metal arc welding and friction stir welding were used as the applicable welding processes for AA6061‐O alloys. The applied post‐weld heat treatment consisted of solution heat treatment, followed by water quenching and finally artificial aging. The samples were classified as post‐weld heat treated and as‐welded joints. The microstructural evolution, tensile properties, hardness features and fracture surfaces of both as‐welded and post‐weld heat treated samples were reported. The results clearly showed that friction stir welding process demonstrated better and more consistent mechanical properties by comparison with the gas metal arc welding process. The weld region of as‐welded samples exhibited a higher hardness value of 80 HV0.1 compared to the base material. In addition, the feasibility of post‐weld heat treatment in order to enhance the mechanical properties and to obtain more homogeneous microstructure of 6061‐O aluminum alloys was evaluated.  相似文献   

9.
Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon‐nanotube (MWCNT)‐ and reduced‐graphene‐oxide (rGO)‐based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a “net”‐like model for MWCNT films and a “scale”‐like model for rGO films to explain these behaviors based on contributions from junction resistances (at interparticle junctions) and intrinsic resistances (of the particles). This phenomenology is accordingly validated via a series of experiments, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, a humidity‐insensitive MWCNT/rGO hybrid conductive films is developed, which has the potential to greatly improve the stability of carbon‐based electrical device to humidity. The authors further investigate the application of such films to human‐finger electronics by fabricating transparent flexible devices consisting of a polyethylene terephthalate substrate equipped with an MWCNT/rGO pattern for gesture recognition, and MWCNT/rGO/MWCNT or rGO/MWCNT/rGO patterns for 3D noncontact sensing, which will be complementary to existing 3D touch technology.  相似文献   

10.
A facile fabrication approach of large‐scale flexible films is reported, with one surface side consisting of Ag‐nanoparticle (Ag‐NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag‐NPs@PAN‐nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag‐NPs onto each of the PAN‐nanohumps. Surface‐enhanced Raman scattering (SERS) activity of the Ag‐NPs@PAN‐nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag‐sputtering process to increase the density of the Ag‐NPs on the sidewalls of the PAN‐nanohumps. More 3D hot spots are thus achieved on a large‐scale. The Ag‐NPs@PAN‐nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag‐NPs@PAN‐nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10−12m and 10−5m can be achieved, respectively. Furthermore, the flexible Ag‐NPs@PAN‐nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as‐fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.  相似文献   

11.
During the regeneration of damaged components such as compressor blades, the weld repair is followed by machining processes. Excess weld material is removed in a cutting process in order to reproduce the final contour. Therefore, both processe have to be considered regarding the resulting surface and functional properties of the repaired component. In this study, bead on plate welds are produced on 10 mm Ti‐6Al‐4 V sheets using micro‐plasma welding with different levels of welding current. They are subsequently re‐contoured via ball end milling using tools of different cutting edge radii. The residual stress depth profile is measured using X‐ray diffractometry. It is shown that the final residual stress depth profile is mainly influenced by the milling process when machining with rounded cutting edges.  相似文献   

12.
Recently we were able to apply the technique of 3D‐Rapid Prototyping (3D‐RP) to the construction of highly accurate three‐dimensional plastic models of biomolecules [Laub, M. et al. (2001), Materialwiss. Werkstofftech. 32, 926]. These models are derived from x‐ray crystallographic data and therefore represent exact replicas of the depicted molecules. Due to their accuracy these models should be suitable for the modelling of protein‐protein‐interactions. In a first study using 3D‐Rapid Prototyping models of bone morphogenetic protein‐2 (BMP‐2) we were able to identify a novel structural motive on the concave side of this protein which we termed anthelix since a left‐handed helix (radius ca. 0.8–1 nm, pitch 8–9 nm) can be fitted into this groove. Based on these structural findings we identified a 15mer polypeptide (KNMTPYRSPPPYVPP) from the Brookhaven database as a potential physiological ligand. Molecular docking studies using a geometric recognition approach confirmed the anthelix as a possible binding site for this peptide. However in affinity chromatography experiments no binding between BMP‐2 and the immobilized peptide was observed. As the question arose whether 3D‐Rapid Prototyping is in general suitable for modelling protein‐protein interaction we used dimeric BMP‐2 to study exemplary monomer‐dimer interaction. Molecular docking studies using the monomeric BMP‐2 subunits predicted a structure which is nearly identical to that found in dimeric BMP‐2 (root mean square deviation < 1 Å) proving the suitability of geometric docking. 3D‐RP‐BMP‐2‐monomers (size 140 mm × 75 mm × 65; magnification ca. 22 × 106 fold) constructed from dimeric BMP‐2 could be assembled by hand yielding a structure highly homologous to dimeric BMP‐2. Differences between the 3D‐Rapid Prototyping model of dimeric BMP‐2 and the assembled monomers arose in several gaps at the interface between the two monomers which are not visible in the dimeric structure. These gaps can be explained by the way the solvent‐accessible molecular surface is generated. During this process an exterior probe sphere is rolled over the spherical atoms of the molecule. Distances between the monomers smaller than the diameter of this sphere are bridged thus resulting in a coherent surface. We conclude that 3D‐Rapid Prototyping is in general eligible for the modelling of protein‐protein‐interaction though there are further efforts needed to increase our understanding of this process.  相似文献   

13.
New developments for wear an corrosion protection by weld surfacing with plasma transmitted arc process Highly wear‐resistant claddings which contain carbides can be applied by weld surfacing with the PTA process. The use of vanadium carbide prevents undesirable reactions with the matrix material. Thus, highly corrosion‐resistant Fe‐based claddings can be produced for applications in the food and marine industries, and Ni‐based claddings can be applied to components exposed to inorganic acid attack. A combined test is applied for determining the relative effect of corrosion under combined exposure to abrasive wear and corrosion and indicates the primacy of abrasive wear for behaviour in operation.  相似文献   

14.
Inorganic–organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon‐absorbing devices mainly because of their superb optoelectronic properties. However, high‐definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high‐resolution spin‐on‐patterning (SoP) process. This fast and facile process is compatible with a variety of spin‐coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high‐performance, ultrathin, and deformable perovskite‐on‐silicon multiplexed image sensor array, paving the road toward next‐generation image sensor arrays.  相似文献   

15.
The feasibility of joining 1.6‐mm‐thick sheets of AA2198‐T8 by the novel friction spot welding technology and the resulting microstructural features on the welds cross sections were assessed, with further evaluation of the process parameters on the weld performance. Besides the intrinsic discontinuity related to the interface between the sheets, the hook feature was found to be inherent to the welding process, and its morphology was determinant to the weld performance and fracture mode. A beneficial response on the shear strength was achieved with the minimization of the hook feature because of the absence of a potential site for crack nucleation, although the generation of other defects, depending on the combination of parameters, could erase this benefit. Through statistical analysis, the most influent parameters on the weld performance were plunge depth and welding time. In the present study, regardless of the weld discontinuities, the optimum shear strength revealed a satisfactory performance in mechanical terms for aerospace applications.  相似文献   

16.
Repair welding for recovery from local damage of a rail head surface is known to cause high residual stress and can accelerate fatigue in the rail. This study examines repair‐welded rails by applying experimental and numerical approaches. In the former approach, two newly manufactured rail specimens and four repair‐welded rail specimens with two different weld depths were prepared, and their residual stresses were measured with a sectioning method. In the latter approach, a finite element repair welding simulation model was developed that adopted a prescribed temperature method with a moving block as an input heat source, and the thermal strain caused by the volume change due to solid‐state phase transformation was considered. Overall, the residual stresses correlated well between the experimental and numerical approaches. The measured high compressive residual stress of ?290 MPa seems to be beneficial to prevent a crack initiation in the rail surface.  相似文献   

17.
Laser Beam Short Pulse Welding of Metal Foils Joining of metallic foils by laser beam spot welding is applied in different fields of electronic production and micro joining technology. The main challenges hereby are the realization of weld spots with high quality, i. e. weld spots with high stability and smooth shape, as well as the stabilization of the process. By the application of short laser pulses usually used for drilling or cutting the time at which the melt pool exists can be reduced and therefore the probability of arising instabilities, too. Short laser pulses are pulses with a length lower than one millisecond; pulses with a pulse length lower than one nanosecond are called ultra short pulses. The attempt of welding metallic foils by short laser pulses provides also the advantage of a lower thermal influence of the material. And a more simple system technology is possible then because different manufacturing methods can be realized with one laser. The main intention of the shown results of some investigations is the qualification of the welding process. Hereby the reachable weld spot quality as well as the enlargement of the process window is of special importance.  相似文献   

18.
Refill friction stir spot welding is a solid‐state process technology that is suitable for welding lightweight materials in similar or dissimilar overlapped configuration. In this study, the fatigue behaviour of single overlapped spot joints of AA2024‐T3 was studied. To statistically analyse the fatigue data, a 2‐parameter Weibull distribution was deployed, considering several reliabilities (Re = 0.99, Re = 0.90, Re = 0.5, Re = 0.10). To obtain an optimized weld parameter according to the fatigue behaviour, 2 different weld conditions were studied, taking into account the effect of the hook formation. The microstructure analyses and microhardness profiles showed great similarity in both weld conditions. However, these conditions presented distinct interfacial hook profiles, in which the interfacial hook downward represented better fatigue life and infinite fatigue life at 15% of the maximum strength load. The fracture surfaces obtained from 3 different fracture modes were investigated by using scanning electron microscopy; the crack was tracked and described according to its fracture mechanisms from its initiation until the final failures. It was observed that the crack is initiated at hook profile.  相似文献   

19.
Welded joints of airframes critical to the flight‐safety are commonly repair welded during its operational live. In this study, the effect of up to three weld repairs by gas tungsten arc welding (GTAW) on the axial fatigue strength of AISI4130 steel used in an airframe critical to the flight‐safety was investigated. The tests were performed on hot‐rolled steel plate specimens, 0.89 mm thick, with load ratio R= 0.1, constant amplitude, at 20 Hz frequency and room temperature. The results obtained indicated that the axial fatigue strength decreased with the GTAW process itself, and with the subsequent repair cycles, as a consequence of microstructural and microhardness changes and of weld profile geometry factors, which induced high stress concentration at the weld toe.  相似文献   

20.
A novel method for fabricating 3D metallic nanostructures to be used in polarized color filters based on nanoimprint lithography, electron‐beam evaporation, and nanowelding is proposed. The shape of the nanostructures can be controlled by adjusting the temperature for the nanowelding process. Ag nanowires deposited on polymer patterns are accumulated by the nanowelding process to build up diverse 3D nanostructures. The morphologies of the fabricated 3D nanostructures are analyzed using scanning electron microscopy, atomic force microscopy, and focused ion beam; the heating temperature is varied from 90 to 130 °C in steps of 10 °C. In order to analyze the recrystallization phenomenon after welding, transmission electron microscopy is utilized. The 3D metallic nanostructure has different morphologies and optical properties corresponding to welding temperature conditions and accumulated layer thicknesses. Based on preliminary experimental results, the process parameters are optimized and a polarized color filter is fabricated. Optical characteristics of the filter are evaluated using polarizer and spectrometer. Through this work, it is shown that the proposed method is an effective way to realize various 3D metallic nanostructures for special optical properties, therefore the method based on nanowelding can be utilized in fabrication of functional metamaterials, optical filters, biosensors, and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号