首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study deals with the theoretical enhancement of thermal performance using water‐based (50/50) volume fraction of Fe2O3, CuO, TiO2, Ag, Cu in Al2O3 hybrid nanofluids as coolants for a louvered fin automobile radiator. The effects on thermophysical properties and various performance parameters, i.e., heat transfer, effectiveness, and pumping power of hybrid nanofluids have been compared with water. Among all studied hybrid nanofluids, Al2O3‐Ag/water hybrid nanofluid has higher effectiveness, heat transfer rate, pumping power, and pressure drop of 0.8%, 3%, 6%, and 5.6%, respectively, as compared to water and is followed by (50/50) volume fraction of Cu, CuO, Fe2O3, TiO2 hybrid nanofluids as radiator coolant. For the same radiator size and heat transfer rate, coolant flow rate and pumping work decreases by 3%, 4%, respectively, for Al2O3‐Ag/water hybrid nanofluid and for the same coolant flow rate and heat transfer rate the radiator size decreases by 3% and pumping power increases by 3.4% for Al2O3‐Ag/water hybrid nanofluid as compared to water. Reduction in radiator size may lead to a reduction in radiator cost, engine fuel consumption, and environmental benefit.  相似文献   

2.
An experimental and numerical investigation of the thermal performance of three different nanofluids ethylene glycol‐based CuO, water‐based CuO, and Al2O3 is done in a serpentine‐shaped micorchannel heat sink. The microchannels considered ranged from 810 μm to 890 μm in hydraulic diameter and were made of copper material. The experiments were conducted with the Reynolds number ranging from approximately 100 to 1300. The forced convective heat transfer coefficient of nanofluids shows that there is an improved heat transfer rate compared to base fluids water and ethylene glycol. The experimental results also confirm that there is an earlier transition from laminar to turbulent flow in microchannels. The results prove that as the hydraulic diameter decreases there is increased pressure drop and the heat transfer coefficient increases for both the base fluids and nanofluids. The flow characteristics are discussed based on the pressure drop. While investigating the heat transfer coefficient of the three different nanofluids the nanofluid CuO/EG has the highest heat transfer coefficient as a result of the material's property. This research also will encourage young researchers to work on nanofluids of varying nanoparticle size and concentration to discover new results.  相似文献   

3.
Nanofluids with high thermal conductivity coefficient are introduced to the thermal management system of power battery packs for electric vehicles and hybrid electric vehicles. Two typical cooling structures of cylindrical and square battery packs are described, and their flow models are established. By similarity transformations, the nonlinear system of partial differential equations is reduced and then solved numerically by the shooting method. The heat transfer properties of three types of nanofluids, that is, CuO‐EG, Al2O3‐EG, TiO2‐EG, are analyzed in detail. It is found that CuO‐EG nanofluid is the best coolant for the cylindrical battery pack, whereas Al2O3‐EG nanofluid is the best choice for square battery pack cooling.  相似文献   

4.
In this study, optimum propylene glycol (PG) brine‐based nanofluids are being proposed as coolants for a wavy finned automotive radiator. Performance analysis is conducted and compared with conventional Ethylene Glycol (EG) brine and related nanofluids. A 25% PG brine has similar heat transfer characteristics to water at higher operating temperature ranges. The effects on radiator size, weight and cost, engine efficiency and fuel consumtion, and embodied energy saving and environmental impact are discussed as well. Compared to conventional coolant(EG water brine), for the same cooling capacity and radiator size, the coolant requirement and pumping power are reduced significantly by about 25% and 64%, respectively, whereas, for the same cooling capacity and mass flow rate, the radiator size and pumping power is reduced by 4.2% and 25.5%, respectively, with PG brine‐based Ag nanofluids.Furthermore, by using optimum PG brine‐based nanofluids, 3.5% of the embodied energy may be saved, which may yield reductions in radiator cost, engine fuel consumption and environmental costs.  相似文献   

5.
CFD analysis on a flat tube with semi-circular fins under laminar flow conditions was performed with graphene-based nanofluids considering the nanofluids as incompressible. Different simulations were performed at four different concentrations of nanofluids (0.01%, 0.1%, 0.2%, and 0.4%) and at different volume flow rates (4, 6, 8, and 10 LPM) and at four different forced convective heat transfer coefficients at different wind velocities at 300 K (50, 100, 150, and 200 W/m2 K). It was observed that with an increase in the concentration of nanoparticles in nanofluids, the thermal conductivity of base fluid water was increased (at 353 K the nanofluid of 0.4% volume concentration, the thermal conductivity of nanofluid increased by 200% with respect to base fluid). Graphene-based nanofluids have higher effectiveness than most nanofluids hence it is considered for the analysis, at 0.4% concentration of nanofluid the effectiveness observed was 36.84% at 4 LPM, and for water, the effectiveness was 28.22% under similar conditions. The effect of flow rate on temperature drop was significant. At 4 LPM and at 0.4% of nanofluid, an outlet coolant temperature of 333 K was observed whereas the water outlet temperature at 10 LPM is 346.13 K. The effect of forced convective air heat transfer coefficient was significantly high. At h = 50 W/m2 K the outlet temperature of 0.4% nanofluid at 4 LPM was 345.25 K and at h = 200 W/m2 K, the outlet coolant temperature was 333.47 K. A single tube of the radiator was considered for the analysis whereas the original radiator consists of 50 tubes due to problems of Ansys in meshing.  相似文献   

6.
This research work discusses the heat transfer improvement in a tractor radiator with nanosized particles of CuO with water as base fluid. The nano materials and its suspension in fluids as particles have been the subject of intensive study worldwide recently since pioneering researchers recently discovered the anomalous thermal behavior of these fluids. The engine cooling in heavy vehicles is an important factor for their performance in the intended application. Here, the tractor engine radiator cooling is enhanced by the nanofluid mechanism of heat transfer for its improved performance in agricultural work. Through the improvement of tractor engine cooling through the radiator a greater area can be ploughed and cultivated within a short time span. Heat transfer in automobiles is achieved through radiators. In this research work an experimental and numerical investigation for the improved heat transfer characteristics of a radiator using CuO/water nanofluid for 0.025 and 0.05% volume fraction is done with an inlet temp of 50 °C to 60 °C under the turbulent flow regime (8000 ≤ Re ≤ 25000). The overall heat transfer coefficient decreases with an increase in nanofluid inlet temperature of 50 °C to 60°C. The experimental results of the heat transfer using the CuO nanofluid is compared with the numerical values. The results in this work suggest that the best heat transfer enhancement can be obtained compared with the base fluid by using a system with CuO/ water nanofluid‐cooled radiators.  相似文献   

7.
The present study deals with the energy and exergy analysis of a wavy fin radiator deploying various shapes of Al2O 3‐water as nanocoolant. The effects of radiator effectiveness, pumping power, heat transfer rate, and performance index with variously shaped nanoparticles, mainly spherical, brick, and platelet, on coolant flow rates and air velocities have been investigated. Also, the impacts of entropy, second law efficiency, entropy generation number, and irreversibility on radiator performance analysis have been considered with steady‐state assumptions. Theoretical analysis revealed that the spherical particle–based nanocoolant showed 21.9%, and 18.2% higher effectiveness than platelet and brick nanocoolants. However, minimization in the entropy generation is observed in the platelet shape of the nanoparticle. The second law efficiency is 13% higher for the spherical nanocoolant compared with the brick nanocoolant. An optimum entropy generation number is found at a coolant flow rate of 13 l/min and then gradually decreases with an increase in the coolant flow rate. For all the considered operating parameters, the spherical nanoparticle showed a better performance than brick and platelet nanofluids as a radiator coolant. Due to the enhanced overall performance for the spherical nanofluid, it may be considered as a potential candidate for a radiator coolant.  相似文献   

8.
This paper introduces the historical background about the development of water based, ethylene glycol (EG) based and EG:water mixture nanofluids for the past 20 years. The primary consideration is to review the salient of research work related to EG:water mixture nanofluids and their applications. Nowadays, the fundamental studies of nanofluids are increasing rapidly for engineering applications. The determination of the forced convection heat transfer and pressure drop was reviewed for nanofluid flow in a tube. The experimental and numerical heat transfers of nanofluids were presented. A review of other relevant research studies is also provided. Substantial heat transfer literature has been studied on water based nanofluids used in the fundamental study for engineering applications. However, there are limited studies that use EG:water mixture nanofluids in evaluation of forced convection heat transfer. A number of research studies have been performed to investigate the transport properties of EG:water mixture nanofluids either in experimental or numerical approach. As the performance of EG:water mixture nanofluids could be verified through experimental studies, researchers have conducted the experimental works using several types of potential nanofluids. As a result, nanofluids have been used in certain engineering applications such as in automotive, transportation, cooling of electronics components, solar, and nuclear reactor coolant.  相似文献   

9.
In this study, numerical investigation of CuO/water nanofluids in a triple concentric-tube heat exchanger has been carried out using a commercial CFD software. The primary objective of this study is to conduct a heat transfer and pressure drop characteristics of water-based CuO nanofluids under turbulent flow regime. Reynolds number for the nanofluid has also been considered in the range of 2500 to 10,000 with a nanoparticle volume concentration of 0% to 3%. The effects of flow rate, volume concentration of nanoparticles, and flow arrangement on heat transfer performance of nanofluid have been studied for four flow arrangements. The comparison of the performance with and without nanofluid has been done. It was found that thermal performance and overall effectiveness increased with the increase in Reynolds number and volume concentration of nanoparticles in all the four flow arrangements for the considered range of operating parameters.  相似文献   

10.
Enhancement in heat transfer of the cold side is vital to amplify the performance of a thermoelectric generator (TEG). With enriched thermophysical properties of nanofluids, significant improvement in heat transfer process can be obtained. The current study concerns the performance comparison of an automobile waste heat recovery system with EG‐water (EG‐W) mixture, ZnO, and SiO2 nanofluid as coolants for the TEG system. The effects on performance parameters, that is, circuit voltage, conversion efficiency, and output power with exhaust inlet temperature, the total area of TEG, Reynolds number, and particle concentration of nanofluids for the TEG system have been investigated. A detailed performance analysis revealed an increase in voltage, power output, and conversion efficiency of the TEG system with SiO 2 nanofluid, followed by ZnO and EG‐W coolants. The electric power and conversion efficiency for SiO 2 nanofluid at an exhaust inlet temperature of 500K were enhanced by 11.80% and 11.39% respectively, in comparison with EG‐W coolants. Moreover, the model speculates that an optimal total area of TEGs exists for the maximum power output of the system. With SiO 2 nanofluid as a coolant, the total area of TEGs can be diminished by up to 34% as compared with EG‐W, which brings significant convenience for the placement of TEGs and reduces the cost of the TEG system.  相似文献   

11.
Water and ethylene glycol as conventional coolants have been widely used in an automotive car radiator for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, “nanofluids” have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the application of ethylene glycol based copper nanofluids in an automotive cooling system. Relevant input data, nanofluid properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nanofluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the basefluid) compared to ethylene glycol (i.e. basefluid) alone. It is observed that, about 3.8% of heat transfer enhancement could be achieved with the addition of 2% copper particles in a basefluid at the Reynolds number of 6000 and 5000 for air and coolant respectively. In addition, the reduction of air frontal area was estimated.  相似文献   

12.
《传热工程》2012,33(3):235-251
Abstract

The overall heat transfer of a cross flow heat exchanger can be enhanced by using the nanofluids as coolant, which finds application in reducing the size and weight of automobile radiator. However, improving the heat transfer using nanofluids can be accompanied by simultaneous variations in the required pumping power. This study experimentally evaluates the thermo-hydraulic performance of three nanofluids—metallic (copper, aluminum) and nonmetallic (multiwalled carbon nanotube (MWCNT))—as coolant for an automobile radiator by utilizing an in-house test rig. An enhancement in overall heat transfer coefficient can be observed with nanocoolants (nanofluid as coolant), compared to the de-ionized water at the same Reynolds number. The maximum enhancement in the overall heat transfer coefficient was observed to be 40, 29, and 25% for MWCNT, copper, and aluminum nanofluids, respectively. The thermal performance of coolants was also compared with the same pumping power criterion. The overall heat transfer coefficient of nanofluids were higher than basefluid at low pumping power range and the trend changes with increase in the pumping power. The present study shows that the heat transfer characteristics at the same Reynolds number as well as at the same pumping power needs to be considered for the selection of appropriate nanocoolant for automobile radiator application.  相似文献   

13.
The present paper is a comparison between heat transfer characteristics of Al2O3/water and CuO/water nanofluids through a square cross-section cupric duct in laminar flow under uniform heat flux. Sometimes because of pressure drop limitations the need for noncircular ducts arises in many heat transfer applications, and a testing facility has been constructed for this purpose and experimental studies were performed on both nanofluids under different nanoparticles concentrations in distilled water as a base fluid. The results indicate that a considerable heat transfer enhancement has been achieved by both nanofluids compared with base fluid. However, CuO/water nanofluid shows better heat transfer augmentation compared with Al2O3/water nanofluid through square cross-section duct.  相似文献   

14.
For many years, water and ethylene glycol were used as conventional coolants in automotive car radiators, but these coolants offer lower thermal conductivity than is required. This study is focused on the application of water‐based Al2O3 nanofluid at lower concentrations in a car radiator. The Al2O3 nanoparticles with an average diameter of 50 nm are dispersed in demineralized water at four different volume concentrations (0.1 vol. % to 0.4 vol. %) without any dispersant or stabilizer. Flow rate is varied in the range of 2 l/min to 5 l/min and inlet coolant temperature to the radiator is set to 50 °C, 60 °C, and 70 °C. The results show that the heat transfer coefficient increases with an increase in particle concentration, flow rate, and inlet temperature of coolant and the maximum increase in heat transfer coefficient is 45.87 % compared to pure water. However, the Nusselt number increases with the increase in particle concentration, Reynolds number, and inlet temperature of the coolant. In addition with the experimental study, a regression analysis is performed by using the ANOVA method and generates a correlation for the convective heat transfer coefficient.  相似文献   

15.
In this research, the overall heat transfer coefficient of Al2O3/water–mono ethylene glycol (MEG) nanofluids is investigated experimentally in a car radiator under laminar flow conditions. The experimental rig developed is similar to the automotive cooling system. The stable nanofluid used is prepared by a two‐step method. Ultrasonication is done for proper dispersion of 20 nm Al2O3 nanoparticle in carrier fluid water and MEG mixture with 50:50 proportions by volume. The experimental study showed that use of a nanofluid enhances the overall heat transfer coefficient as compared to the base fluid. In this study as the nanoparticle volume fraction increases from 0% to 0.8%, the overall heat transfer coefficient also increases. It was observed that as the nanofluid inlet temperature increased from 65 °C to 85 °C, the overall heat transfer coefficient decreased. It was found that using a 0.2% volume fraction Al2O3/water–MEG nanofluid can enable a 36.69 % reduction in surface area of the radiator.  相似文献   

16.
This study aims to evaluate the thermal performance and friction factor characteristics of the U-shaped serpentine microchannel heat sink using three different nanofluids. Two distinct nanoparticles, namely Al2O3 (alumina) and CuO (copper oxide), were used for the preparation of nanofluids using water and ethylene glycol (EG) as base fluids. Three nanofluids, namely nanofluid I (Al2O3 + water), nanofluid II (CuO + water), and nanofluid III (CuO + EG), have been prepared. The results showed that the thermal conductivity of nanofluids was increased for all concentrations (from 0.01 to 0.3%), compared with base fluids. The theoretical values derived from the relationship between the Darcy friction factor showed a clear understanding of the fully developed laminar flow. Thermal resistance for nanofluid III was lower than other nanofluids, resulting in a higher cooling efficiency. The nanofluid mechanism and the geometry of the U-shaped serpentine heat sink have led to the improvement in the thermal performance of electronic cooling systems.  相似文献   

17.
In the present work a three-dimensional analysis is used to study the heat transfer characteristics of a double-tube helical heat exchangers using nanofluids under laminar flow conditions. CuO and TiO2 nanoparticles with diameters of 24 nm dispersed in water with volume concentrations of 0.5–3 vol.% are used as the working fluid. The mass flow rate of the nanofluid from the inner tube was kept and the mass flow rate of the water from the annulus was set at either half, full, or double the value. The variations of the nanofluids and water temperatures, heat transfer rates and heat transfer coefficients along inner and outer tubes are shown in the paper. Effects of nanoparticles concentration level and of the Dean number on the heat transfer rates and heat transfer coefficients are presented. The results show that for 2% CuO nanoparticles in water and same mass flow rate in inner tube and annulus, the heat transfer rate of the nanofluid was approximately 14% greater than of pure water and the heat transfer rate of water from annulus than through the inner tube flowing nanofluids was approximately 19% greater than for the case which through the inner and outer tubes flow water. The results also show that the convective heat transfer coefficients of the nanofluids and water increased with increasing of the mass flow rate and with the Dean number. The results have been validated by comparison of simulations with the data computed by empirical equations.  相似文献   

18.
The present study deals with the experimental impact of an alternative heat transfer fluids for overall performance improvement for radiators. Water and water mixed with anti‐freezing agents such as ethylene glycol (EG) and propylene glycol (PG) are the traditional coolants for an automotive radiator. Comparison of experimental and numerical analysis of optimum brine solution, that is 25% of propylene glycol and water as coolant for the rectangular fin radiator, has been well discussed. A closed loop test rig was designed, and fabricated with a wind tunnel section to achieve uniform velocity at the test section of the rectangular radiator and was tested for performance. Experimental runs were conducted at varying operating temperatures which included the runs for water, and an optimum propylene glycol brine solutions at 70 °C and 80 °C with various flow rates. Results show the energy performance of an optimum brine solution was nearly similar to that of water at high temperatures. The Nusselt number, heat transfer coefficient, and heat transfer rate for an optimum propylene glycol brine is nearly the same as water at 80 °C with a maximum deviation of 15%, 5.7%, and 6.6%, respectively, for theoretical and experimental result comparisons. Air side and coolant side pressure drops had a maximum deviation of 3.66% and 6.6%, respectively. Air and coolant exit temperatures had a deviation of 5% and 3.5%, respectively, with an air frontal velocity of 4.6 m/s in a rectangular fin radiator for an optimum brine solution used as coolant for the automotive radiator. The optimum propylene glycol brine may be environmentally beneficial.  相似文献   

19.
The performance of hydronic finned-tube heating units with nanofluids is compared to their performance with a conventional heat transfer fluid comprised of 60% ethylene glycol and 40% water, by mass (60% EG) using a mathematical model. The nanofluids modeled are comprised of either CuO or Al2O3 nanoparticles dispersed in the 60% EG solution. The finned tube configuration modeled is similar to that commonly found in building heating systems. The model employs correlations for nanoparticle thermophysical properties and heat transfer that have been previously documented in the literature. The analyses indicate that finned tube heating performance is enhanced by employing nanofluids as a heat transfer medium. The model predicts an 11.6% increase in finned-tube heating output under certain conditions with the 4% Al2O3/60% EG nanofluid and an 8.7% increase with the 4% CuO/60% EG nanofluid compared to heating output with the base fluid. The model predicts that pumping power required for a given heating output with a given finned tube geometry is reduced with both the Al2O3/60% EG and the CuO/60% EG nanofluids compared to the base fluid. The finned tube with 4% Al2O3/60% EG has the lowest liquid pumping power at a given heating output of all the fluids modeled.  相似文献   

20.
Forced convective laminar flow of different types of nanofluids such as Al2O3, CuO, SiO2, and ZnO, with different nanoparticle size 25, 45, 65, and 80 nm, and different volume fractions which ranged from 1% to 4% using ethylene glycol as base fluids were used. A three‐dimensional microtube (MT) with 0.05 cm diameter and 10 cm in length with different values of heat fluxes at the wall is numerically investigated. This investigation covers Reynolds number (Re) in the range of 80 to 160. The results have shown that SiO2‐EG nanofluid has the highest Nusselt number (Nu), followed by ZnO‐EG, CuO‐EG, Al2O3‐EG, and finally pure EG. The Nu for all cases increases with the volume fraction but it decreases with the rise in the diameter of nanoparticles. In all configurations, the Nu increases with Re. In addition, no effect of heat flux values on the Nu was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号