首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Die typischen hohen C‐ und Si‐Gehalte von Gusseisenwerkstoffen und der weiche Graphit limitieren die Behandel‐ und Beanspruchbarkeit nach dem Nitrieren und der Hartstoffbeschichtung. Wenn die Gusseisenoberfläche vor den genannten Randschichtbehandlungen mittels Elektronstrahls umgeschmolzen wird (Kombinationsbehandlung) und eine harte, graphitfreie ledeburitische Randschicht gebildet wird, dient diese als Stützschicht für die harte und dünne Verbindungs‐ bzw. Hartstoffschicht. Vergleichende Verschleißtests (Stift‐Scheibe) zeigten, dass bei geringen Lasten die Verschleißrate aller Einzel‐ und Kombinationsbehandlungen auf einem vergleichbar niedrigen Niveau wie der unbehandelte und beschichtete Grundwerkstoff liegen. Bei höheren Lasten kommt das überragende Verschleißverhalten der Kombinationsbehandlungen gegenüber den Einzelbehandlungen voll zum Tragen. Die Bildung defektfreier Randschichten nach der Kombinationsbehandlung resultiert außerdem in einer deutlichen Verbesserung der Korrosionsbeständigkeit in chloridhaltiger Lösung. Im Vergleich zum Grundwerkstoff und den Einzelbehandlungen wurden die relevanten Potenziale zu deutlich positiveren Werten verschoben.  相似文献   

2.
The aim of this study was to provide insight on thermal conductivity of three cast iron groups, namely lamellar, compacted and spheroidal graphite irons at elevated temperatures up to 673?K (400°C) in as-cast and austempered states. Austempering treatments increased mechanical properties of all the studied materials while decreasing thermal conductivity across the line. The effects of austempering on conductivity were lower for grey and compacted graphite iron than for spheroidal graphite irons. The results indicate that heat treating can be a viable option in increasing cast iron performance in thermally stressed applications. One ferritic low-silicon spheroidal graphite iron surpassed lamellar graphite iron in conductivity at elevated temperatures, while high-silicon spheroidal graphite irons exhibited low conductivities.  相似文献   

3.
The low‐cycle fatigue behaviour of a cast Al–12Si–CuNiMg alloy, with a high content of Si, is investigated at 200, 350 and 400 °C. The fatigue test results show that the alloy exhibits symmetrical hysteresis loops, moderate cyclic softening and higher fatigue resistance at higher temperature. The fracture surface analysis reveals that more tear ridges are formed at higher temperature, which strongly affect the fatigue resistance. Furthermore, evaluation of the material fatigue resistance using an energy‐based Halford–Marrow model indicates that the material's ability to absorb and dissipate plastic strain energy is enhanced as temperature increases.  相似文献   

4.
5.
6.
7.
The Victorian era in English history is often referred to as a ‘golden age’, marked by unique and historic achievements in the field of engineering and technology. It was in Victorian Britain that new production methods first allowed cast iron to be produced in large enough quantities to be used in substantial building projects. However, a series of high profile structural failures sent shock waves through the engineering profession and general public, prompting one of the first ever systematic investigations into the failure of structures. To track these developments, this paper takes a retrospective view of a number of major cast iron structural disasters that occurred during this period of history. Reassessment of historic incidents will allow use of modern analytical techniques not available at the time of initial investigation. A specific case study analysis into the demise of the Tay Bridge is used to demonstrate the value of engineering lessons to be learnt from taking a retrospective view. Reconsideration of historic failure is shown to demonstrate incremental advances made in the understanding of the limits of materials available at that time.  相似文献   

8.
Plasma nitriding of aluminum alloys is a suitable method for improving wear resistance because of the hard ceramic AlN layer formed. However, the surface's load‐bearing behavior is greatly limited by the low hardness of the Al base material. New investigations regarding improved load support of the thin AlN layer examine the treatment sequence of nitriding and subsequent EB remelting. Because of its broad range of beneficial alloying elements (Si, Fe, Cu, Mg), a hypereutectic Al–Si alloy (DISPAL® S232) ? made by spray forming ? was used as the base material. The electron beam remelting process is carried out on samples with a nitride layer thickness of approx. 3 μm. As a result of the newly formed phases, grain refinement, and oversaturation of the aluminum solid solution, the surface hardness beneath the nitride layer can be increased by up to three times compared to that of the initial base material. The estimated enhancement in load support is evaluated by unlubricated wear tests using a pin‐on‐disc configuration and scratch tests under constant loading conditions. Furthermore, the wear mechanisms are investigated by means of detailed SEM examination of the remelted surface layer.
  相似文献   

9.
10.
In this study, friction stir welding of Ti‐6Al‐4 V was demonstrated in 24 mm thickness material. The microstructure and mechanical properties, fatigue, fracture toughness and crack growth of these thick section friction stir welds were evaluated and compared with electron beam welds produced in the same thickness material. It was found that the friction stir welds possessed a relatively coarse lamellar alpha transformed beta microstructure because of slow cooling from above the transus temperature of the material. The electron beam welds had a fine acicular alpha structure as a result of rapid solidification. The friction stir welds possessed better ductility, fatigue life, fracture toughness and crack growth resistance than the base meal or electron beam welds. Thus, even though friction stir welding is a relatively new process, the performance benefits it offers for the fabrication of heavy gage primary structure make it a more attractive option than the more well‐established electron beam welding method.  相似文献   

11.
A billet of hypoeutectic high‐chromium white iron (19% Cr, 2.5% C) was spray formed using Gas‐to‐Metal Ratios (GMR) of 0.9, 1.0, and 1.1. Microstructural studies and dry sand rubber wheel abrasion tests were carried out, on the one hand, to compare between the spray formed and conventionally cast material and, on the other hand, to investigate the relationship between gas‐to‐metal‐ratio, eutectic carbide morphology and abrasion resistance. The spray formed material was characterized by a considerably finer carbide morphology (max. ?30 μm) than the conventionally cast material (max. 100–200 μm). The coarser carbide morphology is believed to be responsible for the superior abrasion resistance of the conventionally cast material. Although the carbide morphology of the spray formed material was only moderately influenced by the changes in the gas‐to‐metal‐ratio, there was a clear improvement in the abrasion resistance with decreasing gas‐to‐metal‐ratio. The improvement correlated with a decrease in the fraction of very fine (<1.5 μm) carbides, rather than with an increase in the mean carbide size.  相似文献   

12.
Low‐cycle fatigue tests were conducted on the directionally solidified nickel‐base superalloy DZ125 at 850 °C in the unexposed and exposed specimens for 2, 15, 25 and 50 h in hot corrosion environment. The pre‐exposed specimen exhibited a lower life than unexposed specimens. Fatigue cracks in the unexposed specimens are initiated from defects near the surface, while the cracks of exposed specimens preferentially occur on the surface. Hot corrosion damage in fatigue life was found to be associated with the reduction of the bearing area. A novel life prediction methodology based on continuum damage mechanics was proposed to predict the experimentally observed decrease in low‐cycle fatigue life with increasing prior exposure time.  相似文献   

13.
This paper describes and compares the superplastic behaviour and microstructural evolution of twin roll cast AZ91 and WE43 rolled sheet alloys. Tests were carried out in uniaxial tension on both alloys across a range of temperatures (300 °C–525 °C) and strain rates (1?10‐4 s‐1–1?10‐1 s‐1). In the case of WE43 gas bulge testing was employed at 400 °C and 0.6 MPa to offer a better analogy to superplastic forming than uniaxial tensile testing. Elongations of over 400 % were observed within WE43 when tested at 450 °C and 1?10‐3 s‐1 strain rate, and over 200 % within AZ91 when tested at 350 °C and 1?10‐3 s‐1 strain rate. A peak cone height of 41 mm was achieved with WE43 at a temperature of 400 °C and pressure of 0.6 MPa. Electron back scattered detection technique was employed to analyse the microstructural evolution of the two alloys during the forming process. Both WE43 and AZ91 were observed to undergo dynamic recrystallization during elevated temperature tensile testing and failed at low strain rates mainly by means of coalescence of cavitation, in the case of AZ91 at high strain rates cracking of Al12Mg17 intermetallic particles was the dominating failure mechanism. Both alloys were seen to achieve good levels of superplastic ductility over 200 % elongation, which would be industrially useful in niche vehicle and aerospace manufacturing.  相似文献   

14.
The paper presents the results of the studies of the effect of temperature on the fracture behaviour of Al–Cu–Li alloy laser welds under low‐cycle fatigue loading. The mechanical properties and the microstructure of the welded joints without and after postweld heat treatment (PWHT) were investigated. The tensile strength and the low‐cycle fatigue resistance of the welded joints were studied at various test temperatures (20°C, 85°C and ? 60°C). It was been found that heating up to 85°C and cooling down to ?60°C reduced the maximum number of loading cycles of the welded joints after PWHT by 1.5–2.0 times compared with that at a test temperature of 20°C.  相似文献   

15.
The effects of quenching temperature on microstructure and hardness of cast Fe–8Cr–2B alloy containing 0.3 wt% C, 2.0 wt% B, 8.0 wt% Cr, 0.6 wt% Si, and 0.8 wt% Mn were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Rockwell hardness and Vickers microhardness testers. The experimental results indicate that the as‐cast microstructure of cast Fe–8Cr–2B alloy consists of M2B (M = Fe, Cr), M7(C, B)3, α‐Fe, and γ‐Fe. The dendritic matrix composed of lath martensite mixed with a small amount of retained austenite, and the netlike boride M2B distribute in the grain boundary. After quenching between 950 °C and 1100 °C, the netlike eutectic boride are broken up and a new phase‐M23(C, B)6 which is distributed in the shape of sphere or short rod‐like are precipitated from the matrix. Both the macrohardness and microhardness of specimens increase with the increasing quenching temperature. At about 1050 °C, the hardness reaches the maximum value. However, when the temperature exceeds 1050 °C, the hardness will decrease slightly. With the increase of tempering temperature, the hardness of cast Fe–8Cr–2B alloy quenching from 1050 °C decreases gradually and its impact toughness increases slightly. Crusher hammer made of cast Fe–8Cr–2B alloy quenching from 1050 °C and tempering from 300 °C has good application effect, and its service life improves by 150–180% than that of high manganese steel hammer.  相似文献   

16.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

17.
The spatial evolution of compositions and sub‐structures inside focused‐electron‐beam‐deposited tips from dicobalt‐octacarbonyl Co2(CO)8 precursor at 25 keV and varying beam current (20 pA – 3 μA) is extensively studied for the first time by means of energy dispersive X‐ray spectroscopy, transmission electron microscopy, back‐scattered electron imaging, and ion‐induced secondary electron imaging. Transverse and longitudinal tip cross sections and lamellae were prepared by focused ion beam milling. Two sub‐structure types can be distinguished: a nano‐composite sub‐structure is grown during the initial deposition stage (small‐aspect‐ratio tips). It consists of cobalt nano‐crystals embedded in a carbonaceous matrix. A second distinct cobalt‐grain‐rich sub‐structure develops in high‐aspect ratio tips. Both sub‐structures vary in appearance and composition with increasing beam current: the initial nano‐composite sub‐structure increases in cobalt content and nano‐crystal size, and the cobalt‐grain sub‐structure develops polycrystal‐, texture‐, whisker‐, or platelet‐like habits. The directed precursor flux from a micro‐tube prevents a radial symmetry of the sub‐structures with respect to the impinging focused electron beam, at medium to high beam current. Homogeneous nano‐composite high‐resolution tips with small diameter and length were obtained at low beam current. Observations suggest an additional contribution to pure electron induced precursor molecule decomposition. The influence of electron beam heating and related chemical reactions is discussed.  相似文献   

18.
The effects of quenching temperature on microstructure and performance of Al‐bearing cast boron steel (ACBS) containing 0.25–0.45%C, 1.5–1.8%B and 1.4–1.6%Al were investigated by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X‐ray diffraction (XRD), Rockwell hardness and Vickers micro‐hardness tester. The results show that the solidification structures of cast steel consist of high hardness boride, ferrite, pearlite and a small quantity of martensite when 1.5–1.8%B and 1.4–1.6%Al are added into the carbon steel. The metallic matrix of ACBS changes into single martensite from the mixed structure of ferrite, pearlite and martensite along with the increase of quenching temperature. The increase of quenching temperature also leads to the transformation of boride from continuous shape to isolated shape. Moreover, the micro‐hardness of matrix and macroscopical hardness increase with the increase of quenching temperature. When the quenching temperature excels 1000°C, the hardness has a slight decrease. ACBS has good comprehensive properties after heat treatment at 1000°C.  相似文献   

19.
High‐cycle fatigue (HCF) properties of two Al‐Si‐Cu‐Mg‐Ni alloys with different defect sizes named as alloys A (smaller ones) and B (bigger ones) were investigated at 350°C and 425°C, respectively. The results indicate that fatigue strengths of both alloys decrease as the temperature increases. Fatigue cracks originated from pores and oxide films at both temperatures. They propagated preferentially through cracked matrix at 350°C and debonded interface and grain boundary at 425°C. Alloy A exhibits higher fatigue life and fatigue strength than alloy B at 350°C due to its smaller pore sizes. However, it has slightly worse fatigue properties than alloy B at 425°C because the fatigue crack initiation is controlled by oxide film at this temperature and is not affected by its size. This indicates that there is a transition of predominant initiation site from pores to oxide films when the temperature increases. The fatigue strength estimated through defect size is consistent with the experimental results at 350°C, while unsuitable at 425°C.  相似文献   

20.
Hot‐work tool steel H11 is extensively applied in extrusion industries as extrusion tools. The understanding of its mechanical properties and damage evolution as well as failure is crucial for its implementation. In this paper, a finite element (FE) model employing Chaboche unified constitutive model and ductile damage rule is proposed to simulate the mechanical responses of H11 subjected to low‐cycle fatigue (LCF). Accumulated inelastic hysteresis energy is adopted to demonstrate the impact on damage initiation and evolution rules. A series of tension and LCF experiments were conducted to investigate H11's mechanical properties and its deterioration processes. In addition, to deeply understand the deformation and damage mechanism, scanning electron microscope (SEM) investigations were performed on the fracture section of gauge‐length part of the specimen after failure. Furthermore, the parameters in both constitutive model and damage rule are identified based on experimental data. The comparison of the hysteresis loop of the first cycle and stable cycle with different strain amplitudes demonstrates that the Chaboche constitutive model provides high precision to predict the evolution of mechanical properties. Based on the reliable achieved constitutive model, LCF behaviour prediction with damage rule was executed successfully using FE model and gains a good agreement with the experiments. It is believed that the proposed FE method lays the foundation of structure analysis and rapid design optimization in further applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号