首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The natural convection heat transfer and entropy generation of Al2O3-water nanofluid, in a square cavity with inclination angle θ and the presence of a constant axial magnetic field B0 are examined in this paper. The governing equations are solved numerically by finite volume method. Also an effective parameters analysis was performed by using of the Response Surface Methodology (RSM). The effects of the Rayleigh number (103, 104, 105 and 106), Hartmann number (0, 10, 30 and 50) and also inclination angles (0°, 30°, 60° and 90°) are investigated. It is observed that the mean Nusselt number and the total entropy generation increase when the Rayleigh number increases. It is also found that, regardless of the Ha parameter, by increasing of the inclination angles, the mean Nusselt number and entropy generation rate increase until inclination angle 30° and then they decrease. Also, for low Ra numbers, by increasing the Ha parameter, the mean Nusselt number increases until Ha = 10 and then decreases. The analysis showed that the sensitivity of the Nusselt number and the entropy generation to Ha parameter was too small, and as a result it was negligible. Also, the sensitivity of the mean Nusselt number and the entropy generation to inclination angle, θ, increases by increasing of this angle. It is also observed that the mean Nusselt number and the entropy generation were more sensitive to the inclination angle θ than the Ha parameter.  相似文献   

2.
To investigate natural convection heat transfer in a semi-annulus enclosure filled with nanofluid, the Control Volume based Finite Element Method (CVFEM) is used. The fluid in the enclosure is Cu–water nanofluid. The inner and outer semi circular walls are maintained at constant temperatures while the two other walls are thermally insulated. The Navier Stokes equations in their vorticity-stream function form are used to simulate the flow pattern and isotherms. The numerical investigation is carried out for different governing parameters namely; the Rayleigh number, nanoparticle volume fraction and the angle of turn for the enclosure. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. The results reveal that there is an optimum angle of turn in which the average Nusselt number is maximum for each Rayleigh number. Moreover, the angle of turn has an important effect on the streamlines, isotherms and maximum or minimum values of local Nusselt number.  相似文献   

3.
Entropy generation of an Al2O3–water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side‐wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 and 107 and volume fraction between 0 and 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation, and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer, and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.  相似文献   

4.
Numerical experiments were performed on an incompressible fluid contained in a tilted nonrectangular enclosure. Rayleigh numbers of l02-l05 and Prandtl numbers of 0.001-100 are considered. The wall angles are 22.5°, 45°, and 77.5° with aspect ratios of 3 and 6. Results indicate that the heat transfer and fluid motion within the enclosure are strong functions of Rayleigh number, Prandtl number, and orientation angle of the enclosure. For Rayleigh numbers greater than 1& and Prandtl numbers greater than 0.1, a minimum and a maximum mean Nusselt number occurred as the angle of orientation was increased from 0° to 360°. A transition in the mode of circulation occurred at the angles corresponding to the minimum or maximum rate of heat transfer.  相似文献   

5.
In this work, the heat transfer enhancement in a differentially heated enclosure using variable thermal conductivity and variable viscosity of Al2O3–water and CuO–water nanofluids is investigated. The results are presented over a wide range of Rayleigh numbers (Ra = 103–105), volume fractions of nanoparticles (0 ≤ φ ≤ 9%), and aspect ratios (½ ≤ A ≤ 2). For an enclosure with unity aspect ratio, the average Nusselt number of a Al2O3–water nanofluid at high Rayleigh numbers was reduced by increasing the volume fraction of nanoparticles above 5%. However, at low Rayleigh numbers, the average Nusselt number was slightly enhanced by increasing the volume fraction of nanoparticles. At high Rayleigh numbers, CuO–water nanofluids manifest a continuous decrease in Nusselt number as the volume fraction of nanoparticles is increased. However, the Nusselt number was not sensitive to the volume fraction at low Rayleigh numbers. The Nusselt number demonstrates to be sensitive to the aspect ratio. It was observed that enclosures, having high aspect ratios, experience more deterioration in the average Nusselt number when compared to enclosures having low aspect ratios. The variable thermal conductivity and variable viscosity models were compared to both the Maxwell-Garnett model and the Brinkman model. It was found that at high Rayleigh numbers the average Nusselt number was more sensitive to the viscosity models than to the thermal conductivity models.  相似文献   

6.
Experimental investigation on natural convection heat transfer is carried out inside vertical circular enclosures filled with Al2O3–water nanofluid with different concentrations; 0.0%, 0.85% (0.21%), 1.98 (0.51%), and 2.95% (0.75%) by mass (volume). Two enclosures are used with 0.20 m inside diameter and with two different aspect ratios. The top surface of the enclosure is heated using a constant-heat-flux flexible foil heater while the bottom surface is subject to cooling using an ambient air stream. Various heat fluxes are used to generate heat transfer through the nanofluid. The average Nusselt number is obtained for each enclosure and correlated with the modified Rayleigh number using the concentration ratio as a parameter. A general correlation for the average Nusselt number with the modified Rayleigh number is obtained using the volume fraction and the aspect ratio as parameters to cover both enclosures. The results show that the Nusselt number for the alumina–water nanofluid is less than that of the base fluid. This means that using the alumina–water nanofluids adversely affects the heat transfer coefficient compared to using pure water. It is also found that the degree of deterioration depends on the concentration ratio as well as the aspect ratio of the enclosure.  相似文献   

7.
Numerical investigations are presented for mixed convection problems in a concentric inner sinusoidal cylinder and an outer rotating circular cylinder, which were kept at constant hot and cold temperatures, respectively. The free space between the cylinders and the enclosure walls was filled with a water‐Cu nanofluid. The governing equations are formulated for velocity, pressure, and temperature formulation and are modeled in COMSOL5.2a, a partial differential equation solver based on the Galerkin finite element method. The governing parameters considered are the solid volume fraction, [0, 0.02, 0.04, and 0.06], Re (1, 25, 100, 200, and 300), and Ra (less than 104), and the inner cylinder corrugation frequencies varied from (N = 3, 6, and 9). According to the calculations, the Reynolds number, the Rayleigh number, the nanoparticle volume fraction, and the number of corrugations play an important role of forming the stream and isothermal lines, the local and the average Nusselt number inside the annulus enclosure. The average Nusselt number decreases with increasing Reynolds number and the number of corrugations, while it increases as the Rayleigh number and the volume fraction increase.  相似文献   

8.
Natural convection inside a triangular solar collector is investigated numerically for different nanofluids and hybrid nanofluids in this study. The individual effects of Al2O3–water, carbon nanotubes (CNT)–water, and Cu–water nanofluids are observed for different solid volume fractions of nanoparticles (0%–10%). Three types of hybrid nanofluids are prepared using different ratios of Al2O3, CNT, and Cu nanoparticles in water. A comparison is made varying the Rayleigh numbers within laminar range (103–106) for different tilt angles (0°, 30°, 60°, and 90°) of the solar collector. The inclined surface of the triangular solar collector is isothermally cold and the bottom wall (absorber plate) is isothermally hot, whereas the vertical wall with respect to the absorber plate is considered adiabatic. Average Nusselt numbers along the hot wall for different parameters are observed. Streamlines and isotherm contours are also plotted for different cases. Dimensionless governing Navier–Stokes and thermal energy conservation equations are solved by Galerkin weighted residual finite element method. Better convective heat transfer is found for higher Rayleigh number, solid volume fraction, and tilt angle. In the case of hybrid nanofluid, increasing the percentage of the nanoparticle that gives better heat transfer performance individually results in enhancing natural convection heat transfer inside the enclosure.  相似文献   

9.
Mixed convection of a nanofluid consisting of water and SiO2 in an inclined enclosure cavity has been studied numerically. The left and right walls are maintained at different constant temperatures while upper and bottom insulated walls are moving lids. Two-phase mixture model has been used to investigate the thermal behaviors of the nanofluid for various inclination angles of enclosure ranging from θ = − 60° to θ = 60°, volume fraction from 0% to 8%, Richardson numbers varying from 0.01 to 100 and constant Grashof number 104. The governing equations are solved numerically using the finite-volume approach. Results are presented in the form of streamlines, isotherms, distribution of nanoparticles and average Nusselt number. In addition, effects of solid volume fraction of nanofluids on the hydrodynamic and thermal characteristics have been investigated. The results reveal that addition of nanoparticles enhances heat transfer in the cavity remarkably and causes significant changes in the flow pattern. Besides, effect of inclination angle is more pronounced at higher Richardson numbers.  相似文献   

10.
In this paper, combined convective heat transfer and nanofluids flow characteristics in a vertical rectangular duct are numerically investigated. This investigation covers Rayleigh numbers in the range of 2 × 106Ra ≤ 2 × 107 and Reynolds numbers in the range of 200 ≤ Re ≤ 1000. Pure water and five different types of nanofluids such as Ag, Au, CuO, diamond, and SiO2 with a volume fraction range of 0.5% ≤ φ ≤ 3% are used. The three‐dimensional steady, laminar flow, and heat transfer governing equations are solved using finite volume method (FVM). The effects of Rayleigh number, Reynolds number, nanofluids type, nanoparticle volume fraction of nano‐ fluids, and effect of radiation on the thermal and flow fields are examined. It is found that the heat transfer is enhanced using nanofluids by 47% when compared with water. The Nusselt number increases as the Reynolds number and Rayleigh number increase and aspect ratio decreases. A SiO2 nanofluid has the highest Nusselt number and highest wall shear stress while the Au nanofluid has the lowest Nusselt number and lowest wall shear stress. The results also revealed that the wall shear stress increases as Reynolds number increases, aspect ratio decreases, and nanoparticle volume fraction increases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20354  相似文献   

11.
Natural convection experiments were performed with aluminum oxide microparticle aqueous suspensions in thin enclosures of circular planform at angles of inclination to the horizontal of 90°, 30° and 0°. The average size of the aluminum oxide particles was about 250 nm, and volume fractions of 1.31% and 2.72% were used. The aspect ratio varied from 50.7 to 10.9, and the maximum Raleigh number was 3 × 105. No effect of particles on the Nusselt number–Rayleigh number relation was found for the vertical enclosure at 90°. However at 30° and 0° (horizontal) there was a decrease in Nusselt number compared to pure water, which was pronounced at lower Rayleigh number and higher particle concentrations. This anomalous behavior is attributed to sedimentation.  相似文献   

12.
This article presents a numerical study of natural convection cooling of a heat source mounted inside the cavity, with special attention being paid to entropy generation. The right vertical wall is partially open and is subjected to copper–water nanofluid at a constant low temperature and pressure, while the other boundaries are assumed to be adiabatic. The governing equations have been solved using the finite volume approach, using SIMPLE algorithm on the collocated arrangement. The study has been carried out for a Rayleigh number in the range 103 < Ra < 106, and for solid volume fraction 0 <? <0.05. In order to investigate the effect of the heat source and open boundary location, six different configurations are considered. The effects of Rayleigh numbers, heat source and open boundary locations on the streamlines, isotherms, local entropy generation, Nusselt number, and total entropy generation are investigated. The results indicate that when open boundary is located up, the fluid flow augments and hence the heat transfer and Nusselt number increase and total entropy generation decreases.  相似文献   

13.
In this article, Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in a square cavity, which is filled by water/copper nanofluid, has been investigated. The present results are validated by the consequences of an experimental research at Pr = 0.71 and Ra = 1.58 × 109. Calculations are performed for high Rayleigh numbers (Ra = 107–109), low volume fractions of nanoparticles (0 ≤ ? ≤ 0.06), and three aspect ratios (A = 0.5, 1, and 2). In this investigation, we present that large-eddy turbulent nanofluid flow is modeled by the Lattice Boltzmann method (LBM) with a clear and simple statement. Effects of nanopartcles are displayed on streamlines, isotherm counters, local Nusselt number, and average Nusselt number. The average Nusselt number enhances with the augmentation of the nanoparticles volume fractions in the base fluid for multifarious aspect ratios and the Rayleigh numbers. Heat transfer declines with the increase in the aspect ratios in the base fluid, but the effects of nanopaticles are dissimilar for various aspect ratios at different Rayleigh numbers.  相似文献   

14.
ABSTRACT

In this paper, we analyze numerically the effects of the inclination angle on natural convection heat transfer and entropy generation characteristics in a two-dimensional square enclosure saturated with a porous medium. There is a significant alteration in Nusselt number with the orientation of the enclosure at higher values of Rayleigh number. It reveals that the variation of entropy generation rate with the inclination angle is significant for higher values of Darcy number. The dominant source of irreversibility is due to heat transfer at low values of Darcy number, whereas entropy generation due to fluid flow dominates over that due to heat transfer for larger values of Darcy number.  相似文献   

15.
In the present research, the behavior of a Newtonian nanofluid (water–Al2O3) in a mixture phase model approach is numerically examined. The process of heating is done in two different ways. Deterioration was found in the mean Nusselt number of a nanofluid in the mixture‐phase model approach when compared to the mean Nusselt number of pure water. However, in the single‐phase model there was an increase in the Nusselt number when compared to the Nusselt number of pure water. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20383  相似文献   

16.
The buoyancy‐induced heat transfer and fluid flow in a triangular enclosure are investigated both numerically and experimentally. The enclosure is heated from one wall and the adjacent wall is insulated. Hypotenuse of the triangle is cooled isothermally. The numerical tests and experiments covered a range of Rayleigh number, Ra, from 1.5 × 104 to 1.5 × 105. The local and average Nusselt numbers are given for different orientation angles. A code was written based on finite difference method in Fortran platform to solve governing equations of natural convection. Experimental and numerical results show good agreement. It is observed that inclination angle can be used as a control parameter for heat transfer.  相似文献   

17.
A numerical investigation of steady-state laminar natural convective heat transfer around a horizontal cylinder to its concentric triangular enclosure was carried out. The enclosure was filled with air and both the inner and outer cylinders were maintained at uniform temperatures. The buoyancy effect was modeled by applying the Boussinesq approximation of density to the momentum equation and the governing equations were iteratively solved using the control volume approach. The effects of the Rayleigh number and the aspect ratio were examined. Flow and thermal fields were exhibited by means of streamlines and isotherms, respectively. Variations of the maximum value of the dimensionless stream function and the local and average Nusselt numbers were also presented. The average Nusselt number was correlated to the Rayleigh number based on curve-fitting for each aspect ratio. At the highest Rayleigh number studied, the effects of different inclination angles of the enclosure and various cross-section geometries of the inner cylinder were investigated. The computed results indicated that at constant aspect ratio, both the inclination angle and cross-section geometry have insignificant effects on the overall heat transfer rates though the flow patterns are significantly modified.  相似文献   

18.
Natural convection heat transfer in two-dimensional region formed by constant heat flux horizontal flat tube concentrically located in cooled horizontal cylinder was studied numerically by using nanofluid. The model solved using the FLUENT CFD package. The numerical simulations covered a range of hydraulic radius ratio (5, 7.5, and 10) at orientation angles from 0° up to 90°.The results showed that the average Nusselt number increases with hydraulic radius ratio, orientation angles and Rayleigh number, as well as enhancement ratio for Nusselt number at orientation angle 90° and hydraulic radius ratio 7.5 is equal to 24.87%. Both the nanofluid flow and heat transfer characteristics for different cases are illustrated that obtained from the CFD code. The results for the average Nusselt numbers are compared with previous works and show good agreement.  相似文献   

19.
Analysis of combined natural convection with surface radiation in a two‐dimensional enclosure is carried out. To search the optimal location of the heat source, the entropy generation minimization approach and conventional heat transfer parameters are used and compared. Air is considered as an incompressible fluid and transparent media filling the enclosure with a steady and laminar regime. The enclosure internal surfaces are also gray, opaque, and diffused. The governing equations are solved using the finite difference approach. The results show that with increase in emissivity, entropy generation decreases, and as the Rayleigh number increases, the rate of entropy generation increases. Furthermore, optimum design with the maximum dimensionless temperature and convective Nusselt number confirms the applicability of the second law for optimal design.  相似文献   

20.
Natural convection in enclosures using water/SiO2 nanofluid is simulated with Lattice Boltzmann method (LBM). This investigation compared with other numerical methods and found to be in excellent agreement. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103-105, the volumetric fraction of nanoparticles between 0 and 4% and aspect ratio (A) of the enclosure between 0.5 and 2. The thermal conductivity of nanofluids is obtained on basis of experimental data. The comparisons show that the average Nusselt number increases with volume fraction for the whole range of Rayleigh numbers and aspect ratios. Also the effect of nanoparticles on heat transfer augments as the enclosure aspect ratio increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号