首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Graphene plasmons are known to offer an unprecedented level of confinement and enhancement of electromagnetic field. They are hence amenable to interacting strongly with various other excitations (for example, phonons) in their surroundings and are an ideal platform to study the properties of hybrid optical modes. Conversely, the thermally induced motion of particles and quasiparticles can in turn interact with electronic degrees of freedom in graphene, including the collective plasmon modes via the Coulomb interaction, which opens up new pathways to manipulate and control the behavior of these modes. This study demonstrates tunable electrothermal control of coupling between graphene mid‐infrared (mid‐IR) plasmons and IR active optical phonons in silicon nitride. This study utilizes graphene nanoribbons functioning as both localized plasmonic resonators and local Joule heaters upon application of an external bias. In the latter role, they achieve up to ≈100 K of temperature variation within the device area. This study observes increased modal splitting of two plasmon–phonon polariton hybrid modes with temperature, which is a manifestation of increased plasmon–phonon coupling strength. Additionally, this study also reports on the existence of a thermally excited hybrid plasmon–phonon mode. This work can open the door for future optoelectronic devices such as electrically switchable graphene mid‐infrared plasmon sources.  相似文献   

2.
3.
4.
5.
For the first time DNA coils formed by rolling circle amplification are quantified on‐chip by Brownian relaxation measurements on magnetic nanobeads using a magnetoresistive sensor. No external magnetic fields are required besides the magnetic field arising from the current through the sensor, which makes the setup very compact. Limits of detection down to 500 Bacillus globigii spores and 2 pM of Vibrio cholerae are demonstrated, which are on the same order of magnitude or lower than those achieved previously using a commercial macro‐scale AC susceptometer. The chip‐based readout is an important step towards the realization of field tests based on rolling circle amplification molecular analyses.  相似文献   

6.
7.
8.
Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high‐throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig‐zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1‐μm sized beads is demonstrated.  相似文献   

9.
10.
Inspired by the promising applications in thermopower generation from waste heat and active on‐chip cooling, the thermoelectric and electrothermal properties of graphene have been extensively pursued by seeking ingeniously designed structures with thermoelectric conversion capability. The graphene wrinkle is a ubiquitous structure formed inevitably during the synthesis of large‐scale graphene films but the corresponding properties for thermoelectric and electrothermal applications are rarely investigated. Here, the electrothermal Peltier effect from the graphene wrinkle fabricated on a germanium substrate is reported. Peltier cooling and heating across the wrinkle are visualized unambiguously with polarities consistent with p‐type doping and in accordance with the wrinkle spatial distribution. By direct patterning of the nano‐bubble structure, the current density across the wrinkle can be boosted by current crowding to enhance the Peltier effect. The observed Peltier effect can be attributed to the nonequilibrium charge transport by interlayer tunneling across the van der Waals barrier of the graphene wrinkle. The graphene wrinkle in combination with nano‐bubble engineering constitutes an innovative and agile platform to design graphene and other more general two‐dimensional (2D) thermoelectrics and opens the possibility for realizing active on‐chip cooling for 2D nanoelectronics with van der Waals junctions.  相似文献   

11.
Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone‐on‐a‐chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co‐culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone‐on‐a‐chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.  相似文献   

12.
Armchair graphene nanoribbons (AGNRs) with 8 and 10 carbon atoms in width (8‐ and 10‐AGNRs) are synthesized on Au (111) surfaces via lateral fusion of nanoribbons that belong to different subfamilies. Poly‐para‐phenylene (3‐AGNR) chains are pre‐synthesized as ladder ribbons on Au (111). Subsequently, synthesized 5‐ and 7‐AGNRs can laterally fuse with 3‐AGNRs upon annealing at higher temperature, producing 8‐ and 10‐AGNRs, respectively. The synthetic process, and their geometric and electronic structures are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). STS investigations reveal the band gap of 10‐AGNR (2.0 ± 0.1 eV) and a large apparent band gap of 8‐AGNRs (2.3 ± 0.1 eV) on Au (111) surface.  相似文献   

13.
14.
15.
16.
An effective strategy to tackle the twin crises of global deforestation and fossil fuel depletion is to recycle biomass materials for energy storage devices. This study reports a unique and innovative solution to capitalize on a currently overlooked resource to produce high‐performance lithium–sulfur (Li–S) batteries from recycled paper. The recycled paper fibers are creatively composited with graphene oxide sheets via a capillary adsorption method. The recycled paper/graphene oxide hybrid is then converted to activated paper carbon/reduced graphene oxide (APC/graphene) scaffold for sulfur infiltration. The assembled Li–APC/graphene/S battery exhibits a superior lifespan of 620 cycles with an excellent capacity retention rate of 60.5%. An APC interlayer is sandwiched between the Li anode and the separator to suppress the degradation of Li anode by preventing the nonhomogeneous growth of mossy Li whiskers, stretching the battery lifespan up to 1000 cycles with a capacitance retention rate of 52.3%. The capillary adsorption method coupled with the porous carbonaceous anode interlayer configuration creates a new opportunity for the development of batteries derived from porous biomass materials.  相似文献   

17.
The development of self‐powered electronic systems requires integration of on‐chip energy‐storage units to interface with various types of energy harvesters, which are intermittent by nature. Most studies have involved on‐chip electrochemical microsupercapacitors that have been interfaced with energy harvesters through bulky Si‐based rectifiers that are difficult to integrate. This study demonstrates transistor‐level integration of electrochemical microsupercapacitors and thin film transistor rectifiers. In this approach, the thin film transistors, thin film rectifiers, and electrochemical microsupercapacitors share the same electrode material for all, which allows for a highly integrated electrochemical on‐chip storage solution. The thin film rectifiers are shown to be capable of rectifying AC signal input from either triboelectric nanogenerators or standard function generators. In addition, electrochemical microsupercapacitors exhibit exceptionally slow self‐discharge rate (≈18.75 mV h?1) and sufficient power to drive various electronic devices. This study opens a new avenue for developing compact on‐chip electrochemical micropower units integrated with thin film electronics.  相似文献   

18.
19.
As soluble catalysts, redox‐mediators (RMs) endow mobility to catalysts for unconstrained access to tethered solid discharge products, lowering the energy barrier for Li2O2 formation/decomposition; however, this desired mobility is accompanied by the undesirable side effect of RM migration to the Li metal anode. The reaction between RMs and Li metal degrades both the Li metal and the RMs, leading to cell deterioration within a few cycles. To extend the cycle life of redox‐mediated Li–O2 batteries, herein graphene oxide (GO) membranes are reported as RM‐blocking separators. It is revealed that the size of GO nanochannels is narrow enough to reject 5,10‐dihydro‐5,10‐dimethylphenazine (DMPZ) while selectively allowing the transport of smaller Li+ ions. The negative surface charges of GO further repel negative ions via Donnan exclusion, greatly improving the lithium ion transference number. The Li–O2 cells with GO membranes efficiently harness the redox‐mediation activity of DMPZ for improved performance, achieving energy efficiency of above 80% for more than 25 cycles, and 90% for 78 cycles when the capacity limits were 0.75 and 0.5 mAh cm‐2, respectively. Considering the facile preparation of GO membranes, RM‐sieving GO membranes can be cost‐effective and processable functional separators in Li–O2 batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号