首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

2.
Development of efficient and robust cathode catalysts is critical for the commercialization of Li-O2 batteries (LOBs). Herein, a well-designed CePO4@N-P-CNSs cathode catalyst for LOBs via coupling P-N site-rich N, P co-doped graphene-like carbon nanosheets (N-P-CNSs) with nano-CePO4 via a novel “in situ derivation” coupling strategy by in situ transforming the P atoms of P-C sites in N-P-CNSs to CePO4 is reported. The CePO4@N-P-CNSs exhibit superior bifunctional ORR/OER activity relative to commercial Pt/C-RuO2 with an overall overpotential of 0.64 V (vs RHE). Moreover, the LOB with CePO4@N-P-CNSs as the cathode catalyst delivers a low charge overpotential of 0.67 V (vs Li/Li+), high discharge capacity of 29774 mAh g−1 at 100 mA g−1 and long cycling stability of 415 cycles, respectively. The remarkably enhanced LOB performance is attributable to the in situ derived CePO4 nanoparticles and the P-N sites in N-P-CNSs, which facilitate increased bifunctional ORR/OER activity, promote the rapid and effective decomposition of Li2O2 and inhibit the formation of Li2CO3. This work may provide new inspiration for designing efficient, durable, and cost-effective cathode catalysts for LOBs.  相似文献   

3.
Transition metal oxides have recently received great attention for application in advanced lithium‐ion batteries (LIBs) and oxygen evolution reaction (OER). Herein, the ethylenediaminetetraacetic cobalt complex as a precursor to synthesize ultrafine Co3O4 nanoparticles encapsulated into a nitrogen‐doped carbon matrix (NC) composites is presented. The as‐prepared Co3O4/NC‐350 obtained by pyrolysis at 350 °C demonstrates superior rate performance (372 mAh g?1 at 5.0 A g?1) and high cycling stability (92% capacity retention after 300 cycles at 1.0 A g?1) as anode for LIBs. When evaluated as an electrocatalyst for OER, the Co3O4/NC‐350 achieves an overpotential of 298 mV at a current density of 10 mA cm?2. The NC‐encapsualted porous hierarchical structure assures fast and continuous electron transportation, high activity sites, and strong structural integrity. This works offers novel complex precursors for synthesizing transition metal–based electrodes for boosting electrochemical energy conversion and storage.  相似文献   

4.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

5.
The multishelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 hollow microspheres with controllable shell numbers up to septuple shells are synthesized using developed sequential templating method. Exhilaratingly, the septuple‐shelled complex metal oxide hollow microsphere is synthesized for the first time by doping Mn into Co3O4, leading to the change of crystalline rate of precursor. Used as electrode materials for alkaline rechargeable battery, it shows a remarkable reversible capacity (236.39 mAh g?1 at a current density of 1 A g?1 by three‐electrode system and 106.85 mAh g?1 at 0.5 A g?1 in alkaline battery) and excellent cycling performance due to its unique structure.  相似文献   

6.
Recently, binary ZnCo2O4 has drawn enormous attention for lithium‐ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser‐irradiation methodology is firstly devised toward efficient synthesis of oxygen‐vacancy abundant nano‐ZnCo2O4/porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano‐dimensional ZnCo2O4 with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo2O4, favoring for superb electrochemical lithium‐storage performance. More encouragingly, the optimal L‐ZCO@rGO‐30 anode exhibits a large reversible capacity of ≈1053 mAh g?1 at 0.05 A g?1, excellent cycling stability (≈746 mAh g?1 at 1.0 A g?1 after 250 cycles), and preeminent rate capability (≈686 mAh g?1 at 3.2 A g?1). Further kinetic analysis corroborates that the capacitive‐controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen‐vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.  相似文献   

7.
Development of cost‐effective, active trifunctional catalysts for acidic oxygen reduction (ORR) as well as hydrogen and oxygen evolution reactions (HER and OER, respectively) is highly desirable, albeit challenging. Herein, single‐atomic Ru sites anchored onto Ti3C2Tx MXene nanosheets are first reported to serve as trifunctional electrocatalysts for simultaneously catalyzing acidic HER, OER, and ORR. A half‐wave potential of 0.80 V for ORR and small overpotentials of 290 and 70 mV for OER and HER, respectively, at 10 mA cm?2 are achieved. Hence, a low cell voltage of 1.56 V is required for the acidic overall water splitting. The maximum power density of an H2–O2 fuel cell using the as‐prepared catalyst can reach as high as 941 mW cm?2. Theoretical calculations reveal that isolated Ru–O2 sites can effectively optimize the adsorption of reactants/intermediates and lower the energy barriers for the potential‐determining steps, thereby accelerating the HER, ORR, and OER kinetics.  相似文献   

8.
The combination of high‐capacity and long‐term cycling stability is an important factor for practical application of anode materials for lithium‐ion batteries. Herein, NixMnyCozO nanowire (x + y + z = 1)/carbon nanotube (CNT) composite microspheres with a 3D interconnected conductive network structure (3DICN‐NCS) are prepared via a spray‐drying method. The 3D interconnected conductive network structure can facilitate the penetration of electrolyte into the microspheres and provide excellent connectivity for rapid Li+ ion/electron transfer in the microspheres, thus greatly reducing the concentration polarization in the electrode. Additionally, the empty spaces among the nanowires in the network accommodate microsphere volume expansion associated with Li+ intercalation during the cycling process, which improves the cycling stability of the electrode. The CNTs distribute uniformly in the microspheres, which act as conductive frameworks to greatly improve the electrical conductivity of the microspheres. As expected, the prepared 3DICN‐NCS demonstrates excellent electrochemical performance, showing a high capacity of 1277 mAh g?1 at 1 A g?1 after 2000 cycles and 790 mAh g?1 at 5 A g?1 after 1000 cycles. This work demonstrates a universal method to construct a 3D interconnected conductive network structure for anode materials  相似文献   

9.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

10.
A self‐assembled 3D foam‐like NiCo2O4 catalyst has been synthesized via a simple and environmental friendly approach, wherein starch acts as the template to form the unique 3D architecture. Interestingly, when employed as a cathode for lithium oxygen batteries, it demonstrates superior bifunctional electrocatalytic activities toward both the oxygen reduction reaction and the oxygen evolution reaction, with a relatively high round‐trip efficiency of 70% and high discharge capacity of 10 137 mAh g?1 at a current density of 200 mA g?1, which is much higher than those in previously reported results. Meanwhile, rotating disk electrode measurements in both aqueous and nonaqueous electrolyte are also employed to confirm the electrocatalytic activity for the first time. This excellent performance is attributed to the synergistic benefits of the unique 3D foam‐like structure and the intrinsically high catalytic activity of NiCo2O4.  相似文献   

11.
12.
Designing efficient and cost-effective electrocatalysts is the primary imperative for addressing the pivotal concerns confronting lithium–oxygen batteries (LOBs). The microstructure of the catalyst is one of the key factors that influence the catalytic performance. This study proceeds to the advantage of metal-organic frameworks (MOFs) derivatives by annealing manganese 1,2,3-triazolate (MET-2) at different temperatures to optimize Mn2O3 crystals for special microstructures. It is found that at 350 °C annealing temperature, the derived Mn2O3 nanocage maintains the structure of MOF, the inherited high porosity and large specific surface area provide more channels for Li+ and O2 diffusion, beside the oxygen vacancies on the surface of Mn2O3 nanocages enhance the electrocatalytic activity. With the synergy of unique structure and rich oxygen vacancies, the Mn2O3 nanocage exhibits ultrahigh discharge capacity (21 070.6 mAh g−1 at 500 mA g−1) and excellent cycling stability (180 cycles at the limited capacity of 600 mAh g−1 with a current of 500 mA g−1). This study demonstrates that the Mn2O3 nanocage structure containing oxygen vacancies can significantly enhance catalytic performance for LOBs, which provide a simple method for structurally designed transition metal oxide electrocatalysts.  相似文献   

13.
The development of high‐capacity, Earth‐abundant, and stable cathode materials for robust aqueous Zn‐ion batteries is an ongoing challenge. Herein, ultrathin nickel cobaltite (NiCo2O4) nanosheets with enriched oxygen vacancies and surface phosphate ions (P–NiCo2O4‐x) are reported as a new high‐energy‐density cathode material for rechargeable Zn‐ion batteries. The oxygen‐vacancy and surface phosphate‐ion modulation are achieved by annealing the pristine NiCo2O4 nanosheets using a simple phosphating process. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized P–NiCo2O4‐x nanosheet electrode delivers remarkable capacity (309.2 mAh g?1 at 6.0 A g?1) and extraordinary rate performance (64% capacity retention at 60.4 A g?1). Moreover, based on the P–NiCo2O4‐x cathode, our fabricated P–NiCo2O4‐x//Zn battery presents an impressive specific capacity of 361.3 mAh g?1 at the high current density of 3.0 A g?1 in an alkaline electrolyte. Furthermore, extremely high energy density (616.5 Wh kg?1) and power density (30.2 kW kg?1) are also achieved, which outperforms most of the previously reported aqueous Zn‐ion batteries. This ultrafast and high‐energy aqueous Zn‐ion battery is promising for widespread application to electric vehicles and intelligent devices.  相似文献   

14.
Li‐O2 batteries are claimed to be one of the future energy storage technologies. Great number of scientific and technological challenges should be solved first to transform Li‐O2 battery from a promise to real practical devices. Proposed mechanisms for oxygen reduction assume a reservoir of solved Li+ ions in the electrolyte. However, the role that adsorbed Li+ on the electrode surface might have on the overall oxygen reduction reaction (ORR) has not deserved much attention. Adsorbed Li+ consumption is monitored here using impedance measurements from extended electrochemical double layer capacitance, which depends on the carbon matrix surface area. The presence of O2 drastically reduces the amount of adsorbed Li+, signaling the kinetic competition between Li+ surface adsorption and its consumption, only for potentials corresponding to the oxygen reduction reaction. Noticeably double layer capacitance remains unaltered after cycling. This fact suggests that the ORR products (Li2O2 and Li2CO3) are not covering the internal electrode surface, but deposited on the outer electrode‐contact interface, hindering thereby the subsequent reaction. Current results show new insights into the discharge mechanism of Li‐O2 batteries and reveal the evidence of Li+ desorption from the C surface when the ORR starts.  相似文献   

15.
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2O3 nanoflakes, Co3O4 nanowires, Co3O4–CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2O3/CNTs core/branch composite arrays as the host for Na+ storage are investigated in detail. This V2O3/CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g?1 at 0.1 A g?1 and outstanding high‐rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g?1, and 70% after 10 000 cycles at 10 A g?1). Kinetics analysis reveals that the Na+ storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network.  相似文献   

16.
Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low‐cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron‐cobalt oxide nanosheets (Fex Coy ‐ONSs) with a large specific surface area (up to 261.1 m2 g?1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1‐ONS measured at an overpotential of 350 mV reaches up to 54.9 A g?1, while its Tafel slope is 36.8 mV dec?1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1‐ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1‐ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH? ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.  相似文献   

17.
A high capacity cathode is the key to the realization of high‐energy‐density lithium‐ion batteries. The anionic oxygen redox induced by activation of the Li2MnO3 domain has previously afforded an O3‐type layered Li‐rich material used as the cathode for lithium‐ion batteries with a notably high capacity of 250–300 mAh g?1. However, its practical application in lithium‐ion batteries has been limited due to electrodes made from this material suffering severe voltage fading and capacity decay during cycling. Here, it is shown that an O2‐type Li‐rich material with a single‐layer Li2MnO3 superstructure can deliver an extraordinary reversible capacity of 400 mAh g?1 (energy density: ≈1360 Wh kg?1). The activation of a single‐layer Li2MnO3 enables stable anionic oxygen redox reactions and leads to a highly reversible charge–discharge cycle. Understanding the high performance will further the development of high‐capacity cathode materials that utilize anionic oxygen redox processes.  相似文献   

18.
The oxygen evolution reaction (OER) is pivotal in multiple gas‐involved energy conversion technologies, such as water splitting, rechargeable metal–air batteries, and CO2/N2 electrolysis. Emerging anion‐redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice‐oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice‐oxygen sites for OER catalysis via constructing a Ruddlesden–Popper/perovskite hybrid, which is prepared by a facile one‐pot self‐assembly method, is developed. As a proof‐of‐concept, the unique hybrid catalyst (RP/P‐LSCF) consists of a dominated Ruddlesden–Popper phase LaSr3Co1.5Fe1.5O10‐δ (RP‐LSCF) and second perovskite phase La0.25Sr0.75Co0.5Fe0.5O3‐δ (P‐LSCF), displaying exceptional OER activity. The RP/P‐LSCF achieves 10 mA cm?2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state‐of‐the‐art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP‐LSCF oxide. The high catalytic performance for RP/P‐LSCF is attributed to the strong metal–oxygen covalency and high oxygen‐ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice‐oxygen activation to participate in OER. The success of Ruddlesden–Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.  相似文献   

19.
MoS2 nanosheets as a promising 2D nanomaterial have extensive applications in energy storage and conversion, but their electrochemical performance is still unsatisfactory as an anode for efficient Li+/Na+ storage. In this work, the design and synthesis of vertically grown MoS2 nanosheet arrays, decorated with graphite carbon and Fe2O3 nanoparticles, on flexible carbon fiber cloth (denoted as Fe2O3@C@MoS2/CFC) is reported. When evaluated as an anode for lithium‐ion batteries, the Fe2O3@C@MoS2/CFC electrode manifests an outstanding electrochemical performance with a high discharge capacity of 1541.2 mAh g?1 at 0.1 A g?1 and a good capacity retention of 80.1% at 1.0 A g?1 after 500 cycles. As for sodium‐ion batteries, it retains a high reversible capacity of 889.4 mAh g?1 at 0.5 A g?1 over 200 cycles. The superior electrochemical performance mainly results from the unique 3D ordered Fe2O3@C@MoS2 array‐type nanostructures and the synergistic effect between the C@MoS2 nanosheet arrays and Fe2O3 nanoparticles. The Fe2O3 nanoparticles act as spacers to steady the structure, and the graphite carbon could be incorporated into MoS2 nanosheets to improve the conductivity of the whole electrode and strengthen the integration of MoS2 nanosheets and CFC by the adhesive role, together ensuring high conductivity and mechanical stability.  相似文献   

20.
Freestanding bifunctional electrodes with outstanding oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) properties are of great significance for zinc–air batteries, attributed to the avoided use of organic binder and strong adhesion with substrates. Herein, a strategy is developed to fabricate freestanding bifunctional electrodes from the predeposited nickel nanoparticles (Ni‐NCNT) on carbon fiber paper. The steric effect of monodispersed SiO2 nanospheres limits the configuration of carbon atoms forming 3D interconnected nanotubes with uniformly distributed NiN2 active sites. The bifunctional electrodes (Ni‐NCNT) demonstrate ideal ORR and OER properties. The zinc–air batteries assembled with Ni‐NCNT directly exhibit extremely outstanding long term stability (2250 cycles with 10 mA cm?2 charge/discharge current density) along with high power density of 120 mV cm?2 and specific capacity of 834.1 mA h g?1. This work provides a new view to optimize the distribution of active sites and the electrode structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号