首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lip-reading provides an effective speech communication interface for people with voice disorders and for intuitive human–machine interactions. Existing systems are generally challenged by bulkiness, obtrusiveness, and poor robustness against environmental interferences. The lack of a truly natural and unobtrusive system for converting lip movements to speech precludes the continuous use and wide-scale deployment of such devices. Here, the design of a hardware–software architecture to capture, analyze, and interpret lip movements associated with either normal or silent speech is presented. The system can recognize different and similar visemes. It is robust in a noisy or dark environment. Self-adhesive, skin-conformable, and semi-transparent dry electrodes are developed to track high-fidelity speech-relevant electromyogram signals without impeding daily activities. The resulting skin-like sensors can form seamless contact with the curvilinear and dynamic surfaces of the skin, which is crucial for a high signal-to-noise ratio and minimal interference. Machine learning algorithms are employed to decode electromyogram signals and convert them to spoken words. Finally, the applications of the developed lip-reading system in augmented reality and medical service are demonstrated, which illustrate the great potential in immersive interaction and healthcare applications.  相似文献   

2.
Coating inkjet‐printed traces of silver nanoparticle (AgNP) ink with a thin layer of eutectic gallium indium (EGaIn) increases the electrical conductivity by six‐orders of magnitude and significantly improves tolerance to tensile strain. This enhancement is achieved through a room‐temperature “sintering” process in which the liquid‐phase EGaIn alloy binds the AgNP particles (≈100 nm diameter) to form a continuous conductive trace. Ultrathin and hydrographically transferrable electronics are produced by printing traces with a composition of AgNP‐Ga‐In on a 5 µm‐thick temporary tattoo paper. The printed circuit is flexible enough to remain functional when deformed and can support strains above 80% with modest electromechanical coupling (gauge factor ≈1). These mechanically robust thin‐film circuits are well suited for transfer to highly curved and nondevelopable 3D surfaces as well as skin and other soft deformable substrates. In contrast to other stretchable tattoo‐like electronics, the low‐cost processing steps introduced here eliminate the need for cleanroom fabrication and instead requires only a commercial desktop printer. Most significantly, it enables functionalities like “electronic tattoos” and 3D hydrographic transfer that have not been previously reported with EGaIn or EGaIn‐based biphasic electronics.  相似文献   

3.
On-skin flexible devices provide a noninvasive approach for continuous and real-time acquisition of biological signals from the skin, which is essential for future chronic disease diagnosis and smart health monitoring. Great progress has been achieved in flexible devices to resolve the mechanical mismatching between conventional rigid devices and human skin. However, common materials used for flexible devices including silicon-based elastomers and various metals exhibit no resistance to epidermal surface lipids (skin oil and grease), which restricts the long-term and household usability. Herein, an on-skin electrode with anti-epidermal-surface-lipid function is reported, which is based on the grafting of a zwitterionic poly(2-methacryl-oyloxyethyl, methacryloyl-oxyethyl, or meth-acryloyloxyethyl phosphorylcholine) (PMPC) brush on top of gold-coated poly(dimethylsiloxane) (Au/PDMS). Such an electrode allows the skin-lipids-fouled surface to be cleaned by simple water rinsing owing to the superhydrophilic zwitterionic groups. As a proof-of-concept, the PMPC-Au/PDMS electrodes are employed for both electrocardiography (ECG) and electromyography (EMG) recording. The electrodes are able to maintain stable skin-electrode impedance and good signal-to noise ratio (SNR) by water rinsing alone. This work provides a material-based solution to improve the long-term reusability of on-skin electronics and offers a unique prospective on developing next generation wearable healthcare devices.  相似文献   

4.
Underwater vital signs monitoring of respiratory rate, blood pressure, and the heart's status is essential for healthcare and sports management. Real-time electrocardiography (ECG) monitoring underwater can be one solution for this. However, the current electrodes used for ECGs are not suitable for aquatic applications since they may lose their adhesiveness to skin, stable conductivity, or/and structural stability when immersed into water. Here, the design and fabrication of water-resistant electrodes to repurpose stretchable electrodes for applications in an aquatic environment are reported. The electrodes are composed of stretchable metal–polymer composite film as the substrate and dopamine-containing polymer as a coating. The polymer is designed to possess underwater adhesiveness from the dopamine motif, water stability from the main scaffold, and ionic conductivity from the carboxyl groups for signal transmission. Stable underwater conductivity and firm adhesion to skin allow the electrodes to collect reliable ECG signals under various conditions in water. It is shown that wearable devices incorporated with the water-resistant electrodes can acquire real-time ECG signals during swimming, which can be used for revealing the heart condition. These water-resistant electrodes realize underwater detection of ECG signals and can be used for health monitoring and sports management during aquatic activities.  相似文献   

5.
Recent development of epidermal electronics provides an enabling means to continuous monitoring of physiological signals and close tracking of physical activities without affecting quality of life. Such devices require high sensitivity for low‐magnitude signal detection, noise reduction for motion artifacts, imperceptible wearability with long‐term comfortableness, and low‐cost production for scalable manufacturing. However, the existing epidermal pressure sensing devices, usually involving complex multilayer structures, have not fully addressed the aforementioned challenges. Here, the first epidermal–iontronic interface (EII) is successfully introduced incorporating both single‐sided iontronic devices and the skin itself as the pressure sensing architectures, allowing an ultrathin, flexible, and imperceptible packaging with conformal epidermal contact. Notably, utilizing skin as part of the EII sensor, high pressure sensitivity and high signal‐to‐noise ratios are achieved, along with ultralow motion artifacts for both internal (body) and external (environmental) mechanical stimuli. Monitoring of various vital signals, such as blood pressure waveforms, respiration waveforms, muscle activities and artificial tactile sensation, is successfully demonstrated, implicating a broad applicability of the EII devices for emerging wearable applications.  相似文献   

6.
A simple cryo‐transfer method to fabricate ultrathin, stretchable, and conformal epidermal electrodes based on a combination of silver nanowires (AgNWs) network and elastomeric polymers is developed. This method can temporarily enable the soft elastomers with much higher elastic modulus and dimensional contraction through exploiting their glass‐transition behaviors. During this process, a much higher Von Mises stress can be loaded on AgNWs than usual, and the generated strong grip force can facilitate the complete transfer of AgNWs. Afterward, the thawed AgNWs and elastomer composites quickly recover to their soft state at room temperature. The obtained ultrathin and soft electrode with a thickness of 8.4 µm and transmittance of 90.8% at a sheet resistance of 13.2 Ω sq?1 can tolerate a stretching strain of 70% and 50 000 repeated bending cycles, which meets rigorous requirements of epidermal applications. The as‐prepared epidermal electrodes are effective and comfortable for electrophysiological signal monitoring, and while showing excellent performance exceeding the commercialized gel electrodes.  相似文献   

7.
Flexible organic optoelectronic devices simultaneously targeting mechanical conformability and fast responsivity in the near‐infrared (IR) region are a prerequisite to expand the capabilities of practical optical science and engineering for on‐skin optoelectronic applications. Here, an ultraflexible near‐IR responsive skin‐conformal photoplethysmogram sensor based on a bulk heterojunction photovoltaic active layer containing regioregular polyindacenodithiophene‐pyridyl[2,1,3]thiadiazole‐cyclopentadithiophene (PIPCP) is reported. The ultrathin (3 µm thick) photodetector exhibits unprecedented operational stability under severe mechanical deformation at a bending radius of less than 3 µm, even after more than 103 bending cycles. Deliberate optimization of the physical dimensions of the active layer used in the device enables precise on/off switching and high device yield simultaneously. The response frequency over 1 kHz under mechanically deformed conditions facilitates conformal electronic sensors at the machine/human interface. Finally, a mechanically stretchable, flexible, and skin‐conformal photoplethysmogram (PPG) device with higher sensitivity than those of rigid devices is demonstrated, through conformal adherence to the flexuous surface of a fingerprint.  相似文献   

8.
Mechanically durable transparent electrodes are needed in flexible optoelectronic devices to realize their long‐term stable functioning, for applications in various fields such as energy, healthcare, and soft robotics. Several promising transparent electrodes based on nanomaterials have been previously reported to replace the conventional and fragile indium‐tin oxide (ITO); however, obtaining feasible printed transparent electrodes for ultraflexible devices with a multistack structure is still a great challenge. Here, a printed ultrathin (uniform thickness of 100 nm) Ag mesh transparent electrode is demonstrated, simultaneously achieving high conductance, high transparency, and good mechanical properties. It shows a 17 Ω sq?1 sheet resistance (Rsh) with 93.2% transmittance, which surpasses the performance of sputtered ITO electrodes and other ultrathin Ag mesh transparent electrodes. The conductance is stable after 500 cycles of 100% stretch/release deformation, with an insignificant increase (10.6%) in Rsh by adopting a buckling structure. Furthermore, organic photovoltaics (OPVs) using our Ag mesh transparent electrodes achieve a power conversion efficiency of 8.3%, which is comparable to the performance of ITO‐based OPVs.  相似文献   

9.
Pressure to reduce the global amount of e-waste has increased in recent years. The optimal use of natural resources is a demanding area especially due to the overabundance of the use of resources and challenges with after-life disposal. Herein, an easy method is developed to fabricate an improved version of leaf skeleton-based biodegradable, transparent, flexible, and hydrophobic electrodes. A fractal-like rubber leaf skeleton is used as the substrate, physical vapor deposited Au interlayer to promote adhesion, and uniform deposition of overlayer silver nanowires. The fabricated surfaces present a high level of electrical stability, optical transparency, hydrophobicity, and robust mechanical properties. The prepared electrodes demonstrate a comparable level of optical transmittance to the virgin leaf skeleton. The mechanical sturdiness of the electrodes is verified by 1k bending cycles. To demonstrate the functionality of these hybrid biotic conductive network (HBCN) electrodes, their performance is evaluated as flexible transparent heating elements and as biosignal measurement electrodes. The heater can reach a temperature of 140 °C with only 2.5 V in ≈5 s and Ag nanowire loading of ≈160 μg cm−2. Likewise, electrocardiogram (ECG) and electromyogram (EMG) signals are successfully obtained from the electrodes without using any electrode gel or other electrolytes.  相似文献   

10.
Flexible and transparent substrates play a fundamental role as a mechanical support in advanced electronic devices. However, commonly used polymer films, such as polydimethylsiloxane, show low tear resistance because of their crack sensitivity. Herein, inspired by the excellent mechanical robustness of the skin and its fibrous structure, an epoxy-resin-based composite with a flat silk cocoon as a reinforcing fiber network is fabricated. With only 1 wt% of silk fiber, the tensile strength and modulus of the as-prepared composite film are considerably increased by 300% and 612% compared to those of pure resin, while still maintaining flexibility and transparency. More importantly, the composite shows remarkable tear resistance: without fracture after ≈30 000 tensile cycles. The potential application of such transparent composite films as mechanically robust substrates for flexible electronics is also demonstrated. In addition, this study represents a bioinspired strategy to construct high-performance functional composite materials.  相似文献   

11.
Flexible pressure sensors as electronic skins have attracted wide attention to their potential applications for healthcare and intelligent robotics. However, the tradeoff between their sensitivity and pressure range restricts their practical applications in various healthcare fields. Herein, a cost‐effective flexible pressure sensor with an ultrahigh sensitivity over an ultrawide pressure‐range is developed by combining a sandpaper‐molded multilevel microstructured polydimethylsiloxane and a reduced oxide graphene film. The unique multilevel microstructure via a two‐step sandpaper‐molding method leads to an ultrahigh sensitivity (2.5–1051 kPa?1) and can detect subtle and large pressure over an ultrawide range (0.01–400 kPa), which covers the overall pressure regime in daily life. Sharp increases in the contact area and additional contact sites caused by the multilevel microstructures jointly contribute to such unprecedented performance, which is confirmed by in situ observation of the gap variations and the contact states of the sensor under different pressures. Examples of the flexible pressure sensors are shown in potential applications involving the detection of various human physiological signals, such as breathing rate, vocal‐cord vibration, heart rate, wrist pulse, and foot plantar pressure. Another object manipulation application is also demonstrated, where the material shows its great potential as electronic skin intelligent robotics and prosthetic limbs.  相似文献   

12.
Flexible thin‐film sensors have been developed for practical uses in invasive or noninvasive cost‐effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ‐conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin‐conformal sensor array (144 pixels) is fabricated having microtopography‐guided, graphene‐based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin‐like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure‐assisted intimate‐contacts between the device and rough skin. Furthermore, given the thin‐film programmable architecture and mechanical deformability of the sensor, a human skin‐conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse‐waveforms and evolved into a mechanical/thermal‐sensitive electric rubber‐balloon and an electronic blood‐vessel. The microtopography‐guided and self‐assembled conductive patterns offer highly promising methodology and tool for next‐generation biomedical devices and various flexible/stretchable (wearable) devices.  相似文献   

13.
Stretchable and conformal humidity sensors that can be attached to the human body for continuously monitoring the humidity of the environment around the human body or the moisture level of the human skin can play an important role in electronic skin and personal healthcare applications.However,most stretchable humidity sensors are based on the geometric engineering of non-stretchable components and only a few detailed studies are available on stretchable humidity sensors under applied mechanical deformations.In this paper,we propose a transparent,stretchable humidity sensor with a simple fabrication process,having intrinsically stretchable components that provide high stretchability,sensitivity,and stability along with fast response and relaxation time.Composed of reduced graphene oxide-polyurethane composites and an elastomeric conductive electrode,this device exhibits impressive response and relaxation time as fast as 3.5 and 7 s,respectively.The responsivity and the response and relaxation time of the device in the presence of humidity remain almost unchanged under stretching up to a strain of 60% and after 10,000 stretching cycles at a 40% strain.Further,these stretchable humidity sensors can be easily and conformally attached to a finger for monitoring the humidity levels of the environment around the human body,wet objects,or human skin.  相似文献   

14.
Bioelectrodes have been developed to efficiently mediate electrical signals of biological systems as stimulators and recording devices. Recently, conductive hydrogels have garnered great attention as emerging materials for bioelectrode applications because they can permit intimate/conformal contact with living tissues and tissue-like softness. However, administration and control over the in vivo lifetime of bioelectrodes remain challenges. Here, injectable conductive hydrogels (ICHs) with tunable degradability as implantable bioelectrodes are developed. ICHs were constructed via thiol-ene reactions using poly(ethylene glycol)-tetrathiol and thiol-functionalized reduced graphene oxide with either hydrolyzable poly(ethylene glycol)-diacrylate or stable poly(ethylene glycol)-dimaleimide, the resultant hydrogels of which are degradable and nondegradable, respectively. The ICH electrodes had conductivities of 21–22 mS cm−1 and Young's moduli of 15–17 kPa, and showed excellent cell and tissue compatibility. The hydrolyzable conductive hydrogels disappeared 3 days after in vivo administration, while the stable conductive hydrogels maintained their shapes for up to 7 days. Our proof-of-concept studies reveal that electromyography signals with significantly improved sensitivity from rats could be obtained from the injected ICH electrodes compared to skin electrodes and injected nonconductive hydrogel electrodes. The ICHs, offering convenience in use, controllable degradation and excellent signal transmission, will have great potential to develop various bioelectronics devices.  相似文献   

15.
Simultaneous implementation of high signal-to-noise ratio (SNR) but low crosstalk is of great importance for weak surface electromyography (sEMG) signals when precisely driving a prosthesis to perform sophisticated activities. However, due to gaps with the curved skin during muscle contraction, many electrodes have poor compliance with skin and suffer from high bioelectrical impedance. This causes serious noise and error in the signals, especially the signals from low-level muscle contractions. Here, the design of a compliant electrode based on an adhesive hydrogel, alginate–polyacrylamide (Alg-PAAm) is reported, which eliminates those large gaps through the strong electrostatic interaction and abundant hydrogen bond with the skin. The obtained compliant electrode, having an ultralow bioelectrical impedance of ≈20 kΩ, can monitor even 2.1% maximal voluntary contraction (MVC) of muscle. Furthermore, benefiting from the high SNR of >5:1 at low-level MVC, the crosstalk from irrelevant muscle is minimized through reducing the electrode size. Finally, a prosthesis is successfully demonstrated to precisely grasp a needle based on a 9 mm2 Alg-PAAm compliant electrode. The strategy to design such compliant electrodes provides the potential for improving the quality of dynamically weak sEMG signals to precisely control prosthesis in performing purposefully dexterous activity.  相似文献   

16.
The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e‐skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self‐healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered.  相似文献   

17.
This paper describes a durable carbon nanotube (CNT) film for flexible devices and its mechanical properties. Films as thin as 10 nm thick have properties approaching those of existing electrodes based on indium tin oxide (ITO) but with significantly improved mechanical properties. In uniaxial tension, strains as high as 25% are required for permanent damage and at lower strains resistance changes are slight and consistent with elastic deformation of the individual CNTs. A simple model confirms that changes in electrical resistance are described by a Poisson's ratio of 0.22. These films are also durable to cyclic loading, and even at peak strains of 10% no significant damage occurs after 250 cycles. The scratch resistance is also high as measured by nanoscratch, and for a 50 μm tip a load of 140 mN is required to cause initial failure. This is more than 5 times higher than is required to cause cracking in ITO. The robustness of the transparent conductive coating leads to significant improvement in device performance. In touch screen devices fabricated using CNT no failure occurs after a million actuations while for devices based on ITO electrodes 400,000 cycles are needed to cause failure.These durable electrodes hold the key to developing robust, large-area, lightweight, optoelectronic devices such as lighting, displays, electronic-paper, and printable solar cells. Such devices could hold the key to producing inexpensive green energy, providing reliable solid-state lighting, and significantly reducing our dependence on paper.  相似文献   

18.
Ensembles of nanoscopic disk-shaped electrodes have been shown to offer enhancements in electroanalytical detection limits relative to electrodes of macroscopic dimensions (e.g., disk electrodes with diameters of ~1 mm). Enhancements in electroanalytical detection limits have also been observed at macroscopic electrodes that have been coated with films of ion-exchange polymers. In this paper we combine these two concepts. We demonstrate that a nanoelectrode ensemble (NEE) that has been coated with a thin film of the Kodak ion-exchange polymer AQ 55 shows enhanced electroanalytical detection limits relative to the uncoated NEE and to the coated macroscopic electrode. To our knowledge, this is the first investigation of the electrochemistry, and the electroanalytical advantages, of polymer film-coated NEEs.  相似文献   

19.
Layered transition metal dichalcogenide semiconductors, such as MoS2 and WSe2, exhibit a range of fascinating properties and are being currently explored for a variety of electronic and optoelectronic devices. These properties include a low thermal conductivity and a large Seebeck coefficient, which make them promising for thermoelectric applications. Moreover, transition metal dichalcogenides undergo an indirect‐to‐direct bandgap transition when thinned down in thickness, leading to strong excitonic photo‐ and electroluminescence in monolayers. Here, it is demonstrated that a MoS2 monolayer sheet, freely suspended in vacuum over a distance of 150 nm, emits visible light as a result of Joule heating. Due to the poor transfer of heat to the contact electrodes, as well as the suppressed heat dissipation through the underlying substrate, the electron temperature can reach ≈1500–1600 K. The resulting narrow‐band light emission from thermally populated exciton states is spatially located to an only ≈50 nm wide region in the center of the device and goes along with a negative differential electrical conductance of the channel.  相似文献   

20.
An ultrathin skin‐attachable display is a critical component for an information output port in next‐generation wearable electronics. In this regard, quantum dot (QD) light‐emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m?2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin‐mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号