首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel form‐stable composite as phase change material (PCM) for thermal energy storage was prepared by absorbing stearic acid (SA) into halloysite nanotube (HNT). The composite PCM was characterized by TEM, FT‐IR and DSC analysis techniques. The composite can contain SA as high as 60 wt% and maintain its original shape perfectly without any SA leakage after subjected to 50 melt–freeze cycles. The melting temperature and latent heat of composite (SA/HNT: 60/40 wt%) were determined as 53.46°C and 93.97 J g?1 by DSC. Graphite was added into the SA/HNT composite to improve thermal storage performance, and the melting time and freezing time of the composite were reduced by 65.3 and 63.9%, respectively. Because of its high adsorption capacity of SA, high heat storage capacity, good thermal stability, low cost and simple preparation method, the composite can be considered as cost‐effective latent heat storage material for practical application. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The capability of an encapsulated phase change material (EPCM)‐based thermal energy storage (TES) system to store a large fraction of latent energy at high temperatures was examined. A 3‐dimensional simulation of a prototype heat exchanger was conducted employing sodium nitrate as the phase change material (PCM). The kω SST model was used to capture the turbulent flow of the HTF, while the melting front was tracked using the enthalpy‐porosity method. The results show that the use of metal deflectors yields a nearly constant heat transfer coefficient over the capsule's surface. Despite this, the presence of the void in the capsule and natural convection within the molten PCM influenced the storage characteristics of the system affecting the shape of the isotherms and melting front. Furthermore, the EPCM capsules consecutively undergo the same heat transfer starting from the capsule closest to the inlet. The EPCM capsules store 80% of the energy lost by the HTF. The 17.7 kg of sodium nitrate stores 14.5 MJ of energy where 20% of the energy stored is via latent heat. Of the energy released by the heat transfer fluid, 80% was absorbed by the EPCM capsules with the remaining energy going into the test section walls. A total of 14.5 MJ of energy was stored by the 17.7 kg of NaNO3, of which 20% is attributed to the latent heat. The fraction of energy stored as latent heat would be larger if a smaller operating temperature range was used. Thus, an EPCM‐based latent heat TES system is capable of storing a large fraction of the supplied energy and presents efficient means of storing thermal energy for high‐temperature applications. Additionally, the strong agreement between the numerical and experimental works demonstrates that the numerical methods employed can predict the behavior of an EPCM capsule not only within a single capsule but on the system scale as well. Therefore, the applied numerical methods can be used for further design and optimization of EPCM‐based latent heat TES systems.  相似文献   

3.
This paper presents a theoretical analysis and an experimental test on a shell‐and‐tube latent heat storage exchanger. The heat exchanger is used to recover high‐temperature waste heat from industrial furnaces and off‐peak electricity. It can also be integrated into a renewable energy system as an energy storage component. A mathematical model describing the unsteady freezing problem coupled with forced convection is solved numerically to predict the performance of the heat exchanger. It provides the basis for an optimum design of the heat exchanger. The experimental study on the heat exchanger is carried out under various operating conditions. Effects of various parameters, such as the inlet temperature, the mass flow rate, the thickness of the phase‐change material and the length of the pipes, on the heat transfer performance of the unit are discussed combined with theoretical prediction. The criterion for analyzing and evaluating the performance of heat exchanger is also proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
To make better use of solar energy, lauric acid/expanded graphite (LA/EG) composite phase change materials (PCMs) were synthesized to collect and store solar energy as latent heat thermal energy. The results of thermal characteristics show that when the mass fraction of EG is 5%, 10%, and 15%, the latent heat of LA/EG is 164.5, 156.9, and 148.0 J/g, and the thermal conductivity is 2.73, 7.98, and 10.54 W/(m·K). Leakage test shows that LA/EG PCMs with EG mass fraction of 10% and 15% are form stable after phase change. One thousand thermal cycles prove good thermal reliability of LA/EG. TG analysis indicates LA/EG PCMs have good thermal stability within operating temperature range. The Ultraviolet-visible spectra reveal that the absorbance of LA/EG composite PCMs would increase as the mass fraction of EG increases. Photothermal conversion experiment results indicate that the photothermal conversion efficiency of LA/EG composite PCMs increases as the mass fraction of EG increases, and the efficiency can reach 95% when the mass fraction of EG is 15%. Moreover, it was also found that the process of photothermal conversion can be accelerated with stronger illumination intensity or smaller heat transfer size. All the results show that the prepared LA/EG PCMs can convert solar energy into thermal energy and store it in the form of latent heat at the same time, which indicates it has promising prospect in the application of solar energy conversion and storage.  相似文献   

5.
Thermal energy storage systems provide several alternatives for efficient energy use and energy conservation. Microcapsules of natural coco fatty acid mixture were prepared to be used as phase change materials for thermal energy storage. The coacervation technique was used for the microencapsulation process. Several alternatives for the capsule wall material were tried. The microcapsules were characterized according to their geometric profiles, phase transition temperatures, mean particle sizes, chemical stabilities, and their thermal cycling. The diameters of microcapsules prepared in this study were about 1 mm. Coco fatty acid mixtures have kept their geometrical profiles even after 50 thermal cycles for melting and freezing operations in temperature range from 22 to 34°C. It was found that gelatin+gum Arabic mixture was the best wall material for microencapsulating coco fatty acid mixtures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A novel form‐stable phase change wallboard (PCW) was prepared for low‐temperature latent heat thermal energy storage by incorporating eutectic mixture of capric acid and stearic acid and gypsum wallboard. Thermal properties of form‐stable PCW were measured by DSC analysis. The form‐stable PCW has good thermal reliability with respect to the changes in its thermal properties after accelerated thermal cycling. Thermal performance test indicated that the use of such a type of PCW can decrease indoor air temperature fluctuation due to absorption of heat by the eutectic phase change material. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
硅藻土是一种含量丰富的非金属矿,具有较高的孔隙率,良好的表面结构和热物理性能,因而可作为复合储热材料的载体.本文综述了复合储热材料的种类和制备工艺,并介绍了硅藻土的结构,性能和以硅藻土为载体的复合相变储热材料的研究及应用现状.  相似文献   

8.
Microcapsules containing caprylic acid and polyethylacrylate shells were prepared using an emulsion polymerization technique for thermal energy storage applications. Ethylene glycol dimethacrylate was used as a crosslinking agent. The influence of the crosslinking agent concentration on the phase change properties of microcapsules was examined. The caprylic acid microcapsules (MicroPCMs) were analyzed by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and differential scanning calorimetry. The results showed that microcapsules were synthesized successfully and that the best shell material:crosslinking agent concentration ratio was 1:0.2. The melting and freezing temperatures were measured through differential scanning calorimetry analysis and found to be 13.3 and 7.1°C, respectively. The melting and crystallization heats were determined to be 77.3 and ?77.0 kJ/kg, and the mean particle diameter was 0.64 μm. The thermal cycling tests of the microcapsules were performed for 400 heating/cooling cycles, and the results indicate that the synthesized microcapsules have good thermal reliabilities. Air stability test proved that the thermal properties and physical form of microcapsules were not affected by air. We recommend the prepared thermal, air, and chemically stable caprylic acid microcapsules for thermal energy storage applications as novel microPCM with latent heat storage capacities and properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Nanofluids, particularly water‐based nanofluids, have been extensively studied as liquid–solid phase change materials (PCMs) for thermal energy storage (TES). In this study, nanofluids with aqueous ethylene glycol (EG) solution as the base fluid are proposed as a novel PCM for cold thermal energy storage. Nanofluids were prepared by dispersing 0.1–0.4 wt% TiO2 nanoparticles into 12, 22, and 34 vol.% EG solutions. The dispersion stability of the nanofluids was evaluated by Turbiscan Lab. The liquid–solid phase change characteristics of the nanofluids were also investigated. Phase change temperature (PCT), nucleation temperature, and half freezing time (HFT) were investigated in freezing experiments. Subcooling degree and HFT reduction were then calculated. Latent heat of solidification was measured using differential scanning calorimetry. Thermal conductivity was determined using the hot disk thermal constant analyzer. Experimental results show that the nanoparticles decreased the PCT of 34 vol.% EG solution but minimally influenced the PCT of 12 and 22 vol.% EG solutions. For all nanofluids, the nanoparticles decreased the subcooling degree, HFT, and latent heat but increased the thermal conductivity of the EG solutions. The mechanism of the improvement of the phase change characteristics and decrease in latent heat by the nanoparticles was discussed. The nanoparticles simultaneously served as nucleating agent that induced crystal nucleation and as impurities that disturbed the growth of water crystals in EG solution‐based nanofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste, if not utilized properly. The major technical constraint that prevents successful implementation of waste heat recovery is due to its intermittent and time mismatched demand and availability of energy. In the present work, a shell and finned tube heat exchanger integrated with an IC engine setup to extract heat from the exhaust gas and a thermal energy storage tank used to store the excess energy available is investigated in detail. A combined sensible and latent heat storage system is designed, fabricated and tested for thermal energy storage using cylindrical phase change material (PCM) capsules. The performance of the engine with and without heat exchanger is evaluated. It is found that nearly 10–15% of fuel power is stored as heat in the combined storage system, which is available at reasonably higher temperature for suitable application. The performance parameters pertaining to the heat exchanger and the storage tank such as amount of heat recovered, heat lost, charging rate, charging efficiency and percentage energy saved are evaluated and reported in this paper.  相似文献   

11.
Latent heat storage (LHS) using phase change materials is quite attractive for utilization of the exergy of solar energy and industrial exhaust heat because of its high‐heat storage capacity, heat storage and supply at constant temperature, and repeatable utilization without degradation. In this article, general LHS technology is outlined, and then recent advances in the uses of LHS for high‐temperature applications (over 100 °C) are discussed, with respect to each type of phase change material (e.g., sugar alcohol, molten salt, and alloy). The prospects of future LHS systems are discussed from a principle of exergy recuperation. In addition, the technologies to minimize exergy loss in the future LHS system are discussed on the basis of the thermodynamic analysis by ‘thermodynamic compass’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A latent heat thermal energy storage system using a phase change material (PCM) is an efficient way of storing or releasing a large amount of heat during melting or solidification. It has been determined that the shell‐and‐tube type heat exchanger is the most promising device as a latent heat system that requires high efficiency for a minimum volume. In this type of heat exchanger, the PCM fills the annular shell space around the finned tube while the heat transfer fluid flows within the tube. One of the methods used for increasing the rate of energy storage is to increase the heat transfer surface area by employing finned surfaces. In this study, energy storage by phase change around a radially finned tube is investigated numerically and experimentally. The solution of the system consists of the solving governing equations for the heat transfer fluid (HTF), pipe wall and phase change material. Numerical simulations are performed to investigate the effect of several fin parameters (fin spacing and fin diameter) and flow parameter (Re number and inlet temperature of HTF) and compare with experimental results. The effect of each variable on energy storage and amount of solidification are presented graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, an external melt ice‐on‐coil thermal storage was studied and tested over various inlet conditions of secondary fluid—glycol solution—flow rate and temperature in charging process. Experiments were conducted to investigate the effect of inlet conditions of secondary fluid and validate the numerical model predictions on ice‐on‐coil thermal energy storage system. The total thermal storage energy and the heat transfer rate in the system were investigated in the range of 10 l min ?1?V??60 l min ?1. A new numerical model based on temperature transforming method for phase change material (PCM) described by Faghri was developed to solve the problem of the system consisting of governing equations for the heat transfer fluid, pipe wall and PCM. Numerical simulations were performed to investigate the effect of working conditions of secondary fluid and these were compared with the experimental results. The numerical results verified with experimental investigation show that the stored energy rises with increasing flow rate a decreasing tendency. It is also observed that the inlet temperature of the fluid has more influence on energy storage quantity than flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
An Erratum has been published for this article in International Journal of Energy Research 2004; 28 (13): 1213. This paper deals with the simulation of thermal energy storage (TES) system for HVAC applications. TES is considered to be one of the most preferred demand side management technologies for shifting cooling electrical demand from peak daytime hours to off peak night hours. TES is incorporated into the conventional HVAC system to store cooling capacity by chilling ethylene glycol, which is used as a storage medium. The thermodynamic performance is assessed using exergy and energy analyses. The effects of various parameters such as ambient temperature, cooling load, and mass of storage are studied on the performance of the TES. A full storage cycle, with charging, storing and discharging stages, is considered. In addition, energy and exergy analysis of the TES is carried out for system design and optimization. The temperature in the storage is found to be as low as 6.4°C after 1 day of charging without load for a mass of 250 000 kg. It is found that COP of the HVAC system increases with the decrease of storage temperature. Energy efficiency of the TES is found to be 80% for all the mass flow rate of the discharging fluid, whereas exergy efficiency varies from 14 to 0.5%. This is in fact due to the irreversibilities in a TES process destroy a significant amount of the input exergy, and the TES exergy efficiencies therefore become always lower than the corresponding energy efficiencies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study, encapsulated phase change materials (PCMs) were used for the storage of thermal energy. Both experiments and simulation were performed to evaluate the characteristics of encapsulated PCMs. Tests were conducted in a packed bed to determine the performance of the encapsulated PCM. In the preparation of encapsulated PCMs, the coacervation technique was used. The performance of the encapsulated PCM was evaluated in terms of encapsulation ratio, hydrophilicity, and energy storage capacity. The experiments were designed, based on surface response method, to optimize the processing conditions. It was found that a higher coating to paraffin ratio led to a higher paraffin encapsulation ratio. The hydrophilicity value of encapsulated paraffin depended mainly on the ratio of paraffin to coating. The higher the ratio, the lower was its product hydrophilicity. When the paraffin to coating ratio was constant, the higher concentration of HCHO led to a lower hydrophilicity of the product. The encapsulated paraffin has shown large energy storage and release capacity (20–90 J g?1) during its phase changes depending on different ratios of paraffin to coating. Thermal cyclic test showed that encapsulated paraffin kept its geometrical profile and energy storage capacity even after 1000 cycles of operation. In the experiments and simulation of fluid heating process in encapsulated PCM charged packed bed, results showed that Eulerian granular multiphase model in FLUENT 4.47 is suitable for simulation of such a system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, four fatty acids of lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA) were selected to prepare six binary fatty acid eutectics of LA‐MA, LA‐PA, LA‐SA, MA‐PA, MA‐SA, and PA‐SA; thereafter, electrospun ultrafine composite fibers with the binary fatty acid eutectics encapsulated in the supporting matrices of polyethylene terephthalate (PET) were prepared as innovative form‐stable phase change materials for storage and retrieval of thermal energy. The morphological structures and thermal energy storage properties of the ultrafine composite fibers were characterized by scanning electron microscope (SEM) and differential scanning calorimeter (DSC), respectively. The SEM results indicated that the fibers had the cylindrical morphology with diameters of 1–2 µm; some had smooth surfaces, while others had wrinkled surfaces with grooves. The DSC results indicated that the phase transition temperatures of binary fatty acid eutectics were lower than those of individual fatty acids; the enthalpy values associated with melting and crystallization for the eutectics encapsulated in the composite fibers were considerably reduced, whereas there were no appreciable changes on the phase transition temperatures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A composite phase change material (PCM) of copper-doped polyethylene glycol (PEG) 2000 impregnated urchin-like porous titanium dioxide (TiO2) microspheres (PEG/TiO2) was successfully synthesised. The urchin-like porous TiO2 structures contain hollow cavities that can provide a high PEG loading capacity of up to 80 wt%. Copper nanoparticles were uniformly dispersed on the outer and inner surfaces of the 0.8PEG/TiO2 as additives to enhance the thermal conductivity of the composite PCM. The latent heat of the Cu/PEG/TiO2 porous composite PCM reached 133.8 J/g, and the thermal conductivity was 0.58 W/(mK), which was 152.2% higher than that of TiO2 and 38.1% higher than 0.8PEG/TiO2. Moreover, the Cu/PEG/TiO2 porous composite PCM has excellent thermal stability and reliability.  相似文献   

18.
Solid-solid phase change materials (SSPCMs) used in thermal energy storage (TES) system attract much attention in recent days. Here, graphene nanoplatelets (GnPs) were introduced into pentaglycerine (PG) with mass ratios of 1 wt%, 2 wt%, and 4 wt% to obtain PG/GnPs PCMs. The structure and thermal property of PG/GnPs PCMs were characterized by SEM, XPS, FT-IR, POM, DSC, thermal conductivity tester, and heat transfer performance test system. The effect of GnPs on the crystallization kinetic of PG was investigated by isoconversional method. The results indicated that PG and GnPs were uniformly mixed together by physical reaction. GnPs reduced the subcooling and enhanced the thermal conductivity of the PG/GnPs. The heat transfer rate of PG/GnPs was improved during to the high thermal conductivity. Crystallization kinetic results presented that the activation energy increases with the GnP content. In summary, GnPs improved the thermal behaviors of PG.  相似文献   

19.
In this paper, numerical results pertaining to cyclic melting and freezing of an encapsulated phase‐change material (PCM) have been reported. The cyclic nature of the present problem is relevant to latent heat thermal energy storage system used to power solar Brayton engines in space. In particular, a physical and numerical model of the single‐tube phase change heat storage system was developed. A high‐temperature eutectic mixture of LiF‐CaF2 was used as the PCM and dry air was used as the working fluid. Numerical results were compared with available experimental data. The trends were in close agreement. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 32–41, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10132  相似文献   

20.
In the current study, a solar tower–based energy system integrated with a thermal energy storage option is offered to supply both the electricity and freshwater through distillation and reverse osmosis technologies. A high‐temperature thermal energy storage subsystem using molten salt is considered for the effective and efficient operation of the integrated system. The molten salt is heated up to 565°C through passing the solar tower. The thermal energy storage tanks are designed to store heat up to 12 hours. The temperature variations in the storage tanks are studied and compared accordingly for evaluation. The effect of operating temperatures on the freshwater production and overall system efficiency is determined. About 24.46 MW electricity is generated in the steam turbine under sunny conditions. Furthermore, the storage subsystem stores heat during sunny hours to utilize later in cloudy hours and night time. The produced power decreases to 20.17 MW in discharging hours due to temperature decrease in the tank. The electricity generated by the system is then used to produce freshwater through the reverse osmosis units and also to supply electricity for the residential use. A total flowrate of 240.02 kg/s freshwater is obtained by distillation and reverse osmosis subsystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号