首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to single metallic Ni or Co phosphides, bimetallic Ni–Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one‐step solvothermal process is proposed for the synthesis of bouquet‐like cobalt‐doped nickel phosphite (Ni11(HPO3)8(OH)6), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt‐doped Ni11(HPO3)8(OH)6 electrode presents a maximum specific capacitance of 714.8 F g?1. More significantly, aqueous and solid‐state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm?2 at the power density of 0.6 KW cm?2. The solid‐state device shows a high energy density of 14.72 mWh cm?2 at the power density of 0.6 KW cm?2. These excellent performances confirm that the cobalt‐doped Ni11(HPO3)8(OH)6 are promising materials for applications in electrochemical energy storage devices.  相似文献   

2.
Hierarchical nanostructure, high electrical conductivity, extraordinary specific surface area, and unique porous architecture are essential properties in energy storage and conversion studies. A new type of hierarchical 3D cobalt encapsulated Fe3O4 nanosphere is successfully developed on N‐graphene sheet (Co?Fe3O4 NS@NG) hybrid with unique nanostructure by simple, scalable, and efficient solvothermal technique. When applied as an electrode material for supercapacitors, hierarchical Co?Fe3O4 NS@NG hybrid shows an ultrahigh specific capacitance (775 F g?1 at a current density of 1 A g?1) with exceptional rate capability (475 F g?1 at current density of 50 A g?1), and admirable cycling performance (97.1% capacitance retention after 10 000 cycles). Furthermore, the fabricated Co?Fe3O4 NS@NG//CoMnO3@NG asymmetric supercapacitor (ASC) device exhibits a high energy density of 89.1 Wh kg?1 at power density of 0.901 kW kg?1, and outstanding cycling performance (89.3% capacitance retention after 10 000 cycles). Such eminent electrochemical properties of the Co?Fe3O4 NS@NG are due to the high electrical conductivity, ultrahigh surface area, and unique porous architecture. This research first proposes hierarchical Co?Fe3O4 NS@NG hybrid as an ultrafast charge?discharge anode material for the ASC device, that holds great potential for the development of high‐performance energy storage devices.  相似文献   

3.
Supercapacitors (SCs) have been widely studied as a class of promising energy‐storage systems for powering next‐generation E‐vehicles and wearable electronics. Fabricating hybrid‐types of electrode materials and designing smart nanoarchitectures are effective approaches to developing high‐performance SCs. Herein, first, a Ni‐Co selenide material (Ni,Co)Se2 with special cactus‐like structure as the core, to scaffold the NiCo‐layered double hydroxides (LDHs) shell, is designed and fabricated. The cactus‐like structural (Ni,Co)Se2 core, as a highly conductive and robust support, promotes the electron transport as well as hinders the agglomeration of LDHs. The synergistic contributions from the two types of active materials together with the superior properties of the cactus‐like nanostructure enable the (Ni,Co)Se2/NiCo‐LDH hybrid electrode to exhibit a high capacity of ≈170 mA h g?1 (≈1224 F g?1), good rate performance, and long durability. The as‐assembled (Ni,Co)Se2/NiCo‐LDH//PC (porous carbon) asymmetric supercapacitor (ASC) with an operating voltage of 1.65 V delivers a high energy density of 39 W h kg?1 at a power density of 1650 W kg?1. Therefore, the cactus‐like core/shell structure offers an effective pathway to engineer advanced electrodes. The assembled flexible ASC is demonstrated to effectively power electronic devices.  相似文献   

4.
The development of biomass‐based energy storage devices is an emerging trend to reduce the ever‐increasing consumption of non‐renewable resources. Here, nitrogen‐doped carbonized bacterial cellulose (CBC‐N) nanofibers are obtained by one‐step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio‐template for further deposition of ultrathin nickel‐cobalt layered double hydroxide (Ni‐Co LDH) nanosheets. The as‐obtained CBC‐N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g?1 at a discharge current density of 1 A g?1, based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g?1 and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC‐N@LDH composites as positive electrode materials and CBC‐N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC‐N@LDH composites and 3D nitrogen‐doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg?1 at the power density of 800.2 W kg?1. Therefore, this work presents a novel protocol for the large‐scale production of biomass‐derived high‐performance electrode materials in practical supercapacitor applications.  相似文献   

5.
Compared with 2D S‐based and Se‐based transition metal dichalcogenides (TMDs), Te‐based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te‐based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te‐based TMD is reported: the type‐II Weyl semimetal 1Td WTe2. It is demonstrated that single crystals of 1Td WTe2 can be exfoliated into the nanosheets with 2–7 layers by liquid‐phase exfoliation, which are assembled into air‐stable films and further all‐solid‐state flexible supercapacitors. The resulting supercapacitors deliver a mass capacitance of 221 F g?1 and a stack capacitance of 74 F cm?3. Furthermore, they also show excellent volumetric energy and power densities of 0.01 Wh cm?3 and 83.6 W cm?3, respectively, superior to the commercial 4V/500 µAh Li thin‐film battery and the commercial 3V/300 µAh Al electrolytic capacitor, in association with outstanding mechanical flexibility and superior cycling stability (capacitance retention of ≈91% after 5500 cycles). These results indicate that the 1Td WTe2 nanosheet is a promising flexible electrode material for high‐performance energy storage devices.  相似文献   

6.
Porous Ni(OH)2 nanoflakes are directly grown on the surface of nickel foam supported Ni3Se2 nanowire arrays using an in situ growth procedure to form 3D Ni3Se2@Ni(OH)2 hybrid material. Owing to good conductivity of Ni3Se2, high specific capacitance of Ni(OH)2 and its unique architecture, the obtained Ni3Se2@Ni(OH)2 exhibits a high specific capacitance of 1689 µAh cm?2 (281.5 mAh g?1) at a discharge current of 3 mA cm?2 and a superior rate capability. Both the high energy density of 59.47 Wh kg?1 at a power density of 100.54 W kg?1 and remarkable cycling stability with only a 16.4% capacity loss after 10 000 cycles are demonstrated in an asymmetric supercapacitor cell comprising Ni3Se2@Ni(OH)2 as a positive electrode and activated carbon as a negative electrode. Furthermore, the cell achieved a high energy density of 50.9 Wh L?1 at a power density of 83.62 W L?1 in combination with an extraordinary coulombic efficiency of 97% and an energy efficiency of 88.36% at 5 mA cm?2 when activated carbon is replaced by metal hydride from a commercial NiMH battery. Excellent electrochemical performance indicates that Ni3Se2@Ni(OH)2 composite can become a promising electrode material for energy storage applications.  相似文献   

7.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

8.
Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+‐ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus‐doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na‐vacancy diffusion on P‐doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P‐doping. Moreover, the Na‐vacancy diffusion coefficient of the P‐doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10?6–10?4 cm2 s?1) compared with pure MoS2. Finally, the quasi‐solid‐state asymmetrical supercapacitor assembled with P‐doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg?1 at 850 W kg?1 and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g?1.  相似文献   

9.
Efficient and durable oxygen evolution reaction (OER) catalysts are highly required for the cost‐effective generation of clean energy from water splitting. For the first time, an integrated OER electrode based on one‐step direct growth of metallic iron–nickel sulfide nanosheets on FeNi alloy foils (denoted as Fe? Ni3S2/FeNi) is reported, and the origin of the enhanced OER activity is uncovered in combination with theoretical and experimental studies. The obtained Fe? Ni3S2/FeNi electrode exhibits highly catalytic activity and long‐term stability toward OER in strong alkaline solution, with a low overpotential of 282 mV at 10 mA cm?2 and a small Tafel slope of 54 mV dec?1. The excellent activity and satisfactory stability suggest that the as‐made electrode provides an attractive alternative to noble metal‐based catalysts. Combined with density functional theory calculations, exceptional OER performance of Fe? Ni3S2/FeNi results from a combination of efficient electron transfer properties, more active sites, the suitable O2 evolution kinetics and energetics benefited from Fe doping. This work not only simply constructs an excellent electrode for water oxidation, but also provides a deep understanding of the underlying nature of the enhanced OER performance, which may serve as a guide to develop highly effective and integrated OER electrodes for water splitting.  相似文献   

10.
A facile two‐step solution‐phase method has been developed for the preparation of hierarchical α‐MnO2 nanowires@Ni1‐xMnxOy nanoflakes core–shell nanostructures. Ultralong α‐MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1‐xMnxOy nanoflakes were grown on α‐MnO2 nanowires to form core–shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution‐phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one‐dimensional (1D) α‐MnO2 nanowires in hierarchical core–shell nanostructures offer a stable and efficient backbone for charge transport; while the two‐dimensional (2D) Ni1‐xMnxOy nanoflakes on α‐MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core–shell α‐MnO2@Ni1‐xMnxOy nanostructures (x = 0.75) is as high as 657 F g?1 at a current density of 250 mA g?1, and stable charging‐discharging cycling over 1000 times at a current density of 2000 mA g?1 has been realized.  相似文献   

11.
The large‐scale application of supercapacitors (SCs) for portable electronics is restricted by low energy density and cycling stability. To alleviate the limitations, a unique interface engineering strategy is suggested through atomic layer deposition (ALD) and nitrogen plasma. First, commercial carbon cloth (CC) is treated with nitrogen plasma and later inorganic NiCo2O4 (NCO)/NiO core–shell nanowire arrays are deposited on nitrogen plasma–treated CC (NCC) to fabricate the ultrahigh stable SC. An ultrathin layer of NiO deposited on the NCO nanowire arrays via conformal ALD plays a vital role in stabilizing the NCO nanowires for thousands of electrochemical cycles. The optimized NCC/NCO/NiO core–shell electrode exhibits a high specific capacitance of 2439 F g?1 with a remarkable cycling stability (94.2% over 20 000 cycles). Benefiting from these integrated merits, the foldable solid‐state SCs are fabricated with excellent NCC/NCO/NiO core–shell nanowire array electrodes. The fabricated SC device delivers a high energy density of 72.32 Wh kg?1 at a specific capacitance of 578 F g?1, with ultrasmall capacitance decline rate of 0.0003% per cycle over 10 000 charge–discharge cycles. Overall, this strategy offers a new avenue for developing a new‐generation high‐energy, ultrahigh stable supercapacitor for real‐life applications.  相似文献   

12.
Graphene fiber based micro‐supercapacitors (GF micro‐SCs) have attracted great attention for their potential applications in portable and wearable electronics. However, due to strong π–π stacking of nanosheets for graphene fibers, the limited ion accessible surface area and slow ion diffusion rate leads to low specific capacitance and poor rate performance. Here, the authors report a strategy for the synthesis of a vertically oriented graphene nanoribbon fiber with highly exposed surface area through confined‐hydrothermal treatment of interconnected graphene oxide nanoribbons and consequent laser irradiation process. As a result, the as‐obtained fiber shows high length specific capacitance of 3.2 mF cm?1 and volumetric capacitance of 234.8 F cm?3 at 2 mV s?1, as well as excellent rate capability and outstanding cycling performance (96% capacitance retention after 10 000 cycles). Moreover, an all‐solid‐state asymmetric supercapacitor based on graphene nanoribbon fiber as negative electrode and MnO2 coated graphene ribbon fiber as positive electrode, shows high volumetric capacitance and energy density of 12.8 F cm?3 and 5.7 mWh cm?3 (normalized to the device volume), respectively, much higher than those of previously reported GF micro‐SCs, as well as a long cycle life with 88% of capacitance retention after 10 000 cycles.  相似文献   

13.
Solution‐based techniques are considered as a promising strategy for scalable fabrication of flexible electronics owing to their low‐cost and high processing speed. The key to the success of these techniques is dominated by the ink formulation of active nanomaterials. This work successfully prepares a highly concentrated two dimensional (2D) crystal ink comprised of ultrathin nickel hydroxide (Ni(OH)2) nanosheets with an average lateral size of 34 nm. The maximum concentration of Ni(OH)2 nanosheets in water without adding any additives reaches as high as 50 mg mL?1, which can be printed on arbitrary substrates to form Ni(OH)2 thin films. As a proof‐of‐concept application, Ni(OH)2 nanosheet ink is coated on commercialized carbon fiber yarns to fabricate wearable energy storage devices. The thus‐fabricated hybrid supercapacitors exhibit excellent flexibility with a capacitance retention of 96% after 5000 bending–unbending cycles, and good weavability with a high volumetric capacitance of 36.3 F cm?3 at a current density of 0.4 A cm?3, and an energy density of 11.3 mWh cm?3 at a power density of 0.3 W cm?3. As a demonstration of practical application, a red light emitting diode can be lighted up by three hybrid devices connected in series.  相似文献   

14.
Sodium‐ion batteries (SIBs) have gained tremendous interest for grid scale energy storage system and power energy batteries. However, the current researches of anode for SIBs still face the critical issues of low areal capacity, limited cycle life, and low initial coulombic efficiency for practical application perspective. To solve this issue, a kind of hierarchical 3D carbon‐networks/Fe7S8/graphene (CFG) is designed and synthesized as freestanding anode, which is constructed with Fe7S8 microparticles well‐welded on 3D‐crosslinked carbon‐networks and embedded in highly conductive graphene film, via a facile and scalable synthetic method. The as‐prepared freestanding electrode CFG represents high areal capacity (2.12 mAh cm?2 at 0.25 mA cm?2) and excellent cycle stability of 5000 cycles (0.0095% capacity decay per cycle). The assembled all‐flexible sodium‐ion battery delivers remarkable performance (high areal capacity of 1.42 mAh cm?2 at 0.3 mA cm?2 and superior energy density of 144 Wh kg?1), which are very close to the requirement of practical application. This work not only enlightens the material design and electrode engineering, but also provides a new kind of freestanding high energy density anode with great potential application prospective for SIBs.  相似文献   

15.
Transition metal hydro/oxides (TMH/Os) are treated as the most promising alternative supercapacitor electrodes thanks to their high theoretical capacitance due to the various oxidation states and abundant cheap resources of TMH/Os. However, the poor conductivity and logy reaction kinetics of TMH/Os severely restrict their practical application. Herein, hierarchical core–shell P‐Ni(OH)2@Co(OH)2 micro/nanostructures are in situ grown on conductive Ni foam (P‐Ni(OH)2@Co(OH)2/NF) through a facile stepwise hydrothermal process. The unique heterostructure composed of P‐Ni(OH)2 rods and Co(OH)2 nanoflakes boost the charge transportation and provide abundant active sites when used as the intergrated cathode for supercapacitors. It delivers an ultrahigh areal specific capacitance of 4.4 C cm?2 at 1 mA cm?2 and the capacitance can maintain 91% after 10 000 cycles, showing an ultralong cycle life. Additionally, a hybrid supercapacitor composed with P‐Ni(OH)2@Co(OH)2/NF cathode and Fe2O3/CC anode shows a wider voltage window of 1.6 V, a remarkable energy density of 0.21 mWh cm?2 at the power density of 0.8 mW cm?2, and outstanding cycling stability with about 81% capacitance retention after 5000 cycles. This innovative study not only supplies a newfashioned electronic apparatus with high‐energy density and cycling stability but offers a fresh reference and enlightenment for synthesizing advanced integrated electrodes for high‐performance hybrid supercapacitors.  相似文献   

16.
Fiber‐shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one‐step wet‐spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3C2Tx MXene nanosheets and poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm?1, which is about five times higher than other reported Ti3C2Tx MXene‐based fibers (up to ≈290 S cm?1). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm?3 at 5 mV s?1) and an excellent rate performance (≈375.2 F cm?3 at 1000 mV s?1). When assembled into a free‐standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm?3 and ≈8249 mW cm?3, respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene‐based fiber electrodes and their scalable production for fiber‐based energy storage applications.  相似文献   

17.
A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2O5‐NF) to manipulate the charge transport behavior and obtain high‐energy and durable supercapacitors. The interface of V2O5‐NF is modified with oxygen vacancies (Vö) in a one‐step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö‐V2O5/PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö‐V2O5/PANI‐based supercapacitors exhibit an excellent specific capacitance (523 F g?1) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next‐generation energy storage systems.  相似文献   

18.
To alleviate large volume change and improve poor electrochemical reaction kinetics of metal phosphide anode for sodium‐ion batteries, for the first time, an unique Ni2P@carbon/graphene aerogel (GA) 3D interconnected porous architecture is synthesized through a solvothermal reaction and in situ phosphorization process, where core–shell Ni2P@C nanoparticles are homogenously embedded in GA nanosheets. The synergistic effect between components endows Ni2P@C/GA electrode with high structural stability and electrochemical activity, leading to excellent electrochemical performance, retaining a specific capacity of 124.5 mA h g?1 at a current density of 1 A g?1 over 2000 cycles. The robust 3D GA matrix with abundant open pores and large surface area can provide unblocked channels for electrolyte storage and Na+ transfer and make fully close contact between the electrode and electrolyte. The carbon layers and 3D GA together build a 3D conductive matrix, which not only tolerates the volume expansion as well as prevents the aggregation and pulverization of Ni2P nanoparticles during Na+ insertion/extraction processes, but also provides a 3D conductive highway for rapid charge transfer processes. The present strategy for phosphides via in situ phosphization route and coupling phosphides with 3D GA can be extended to other novel electrodes for high‐performance energy storage devices.  相似文献   

19.
Micrometer‐sized electrochemical capacitors have recently attracted attention due to their possible applications in micro‐electronic devices. Here, a new approach to large‐scale fabrication of high‐capacitance, two‐dimensional MoS2 film‐based micro‐supercapacitors is demonstrated via simple and low‐cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro‐supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ~0.45 μm. The optimum MoS2‐based micro‐supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm?2 (volumetric capacitance of 178 F cm?3) and excellent cyclic performance, superior to reported graphene‐based micro‐supercapacitors. This strategy could provide a good opportunity to develop various micro‐/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro‐electronic devices.  相似文献   

20.
High and balanced electronic and ionic transportation networks with nanoscale distribution in solid‐state cathodes are crucial to realize high‐performance all‐solid‐state lithium batteries. Using Cu2SnS3 as a model active material, such a kind of solid‐state Cu2SnS3@graphene‐Li7P3S11 nanocomposite cathodes are synthesized, where 5–10 nm Cu2SnS3 nanoparticles homogenously anchor on the graphene nanosheets, while the Li7P3S11 electrolytes uniformly coat on the surface of Cu2SnS3@graphene composite forming nanoscaled electron/ion transportation networks. The large amount of nanoscaled triple‐phase boundary in cathode ensures high power density due to high ionic/electronic conductions and long cycle life due to uniform and reduced volume change of nano‐Cu2SnS3. The Cu2SnS3@graphene‐Li7P3S11 cathode layer with 2.0 mg cm?2 loading in all‐solid‐state lithium batteries demonstrates a high reversible discharge specific capacity of 813.2 mAh g?1 at 100 mA g?1 and retains 732.0 mAh g?1 after 60 cycles, corresponding to a high energy density of 410.4 Wh kg?1 based on the total mass of Cu2SnS3@graphene‐Li7P3S11 composite based cathode. Moreover, it exhibits excellent rate capability and high‐rate cycling stability, showing reversible capacity of 363.5 mAh g?1 at 500 mA g?1 after 200 cycles. The study provides a new insight into constructing both electronic and ionic conduction networks for all‐solid‐state lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号