首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid‐channel field‐effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time‐dependent behaviors of hybrid‐channel FETs reveal a high sensitivity and selectivity toward the near‐UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid‐channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 1010 and 4 × 1010 per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 105 A W?1 and 106, respectively. Therefore, the hybrid‐channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.  相似文献   

2.
The present study is focused on the copper-doped ZnO system. Bulk copper-doped ZnO pellets were synthesized by a solid-state reaction technique and used as target material in pulsed laser deposition. Thin films were grown for different Cu doped pellets on sapphire substrates in vacuum (5×10?5 mbar). Thin films having (002) plane of ZnO showed different oxidation states of dopants. MH curves exhibited weak ferromagnetic signal for 1–3 % Cu doping but for 5 % Cu doped thin film sample showed the diamagnetic behavior. For deeper information, thin films were grown for 5 % Cu doped ZnO bulk pellet in different oxygen ambient pressures and analyzed. PL measurement at low temperature showed the emission peak in thin films samples due to acceptor-related transitions. XPS results show that copper exists in Cu2+ and Cu+1 valence states in thin films and with increasing O2 ambient pressure the valence-band maximum in films shifts towards higher binding energy. Furthermore, in lower oxygen ambient pressure (1×10?2 mbar) thin films showed magnetic behavior but this vanished for the film grown at higher ambient pressures of oxygen (6×10?2 mbar), which hints towards the decrease in donor defects.  相似文献   

3.
Organic–inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin‐single‐crystal (TSC) photodetectors are fabricated with a vertical p–i–n structure. Due to the absence of grain‐boundaries, the trap densities of TSCs are 10–100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3NH3PbBr3 and CH3NH3PbI3 TSCs show low noise of 1–2 fA Hz?1/2, yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W?1. The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3NH3PbBr3 photodetectors show a linear response to green light from 0.35 pW cm?2 to 2.1 W cm?2, corresponding to a linear dynamic range of 256 dB.  相似文献   

4.
In this work, ZnTe and ZnTe:Cu films were obtained by pulsed laser deposition using the co-deposition method. ZnTe and Cu2Te were used as targets and the shots ratio were varied to obtain 0.61, 1.47, 1.72, and 3.46% Cu concentration. Doping of ZnTe films with Cu was performed with the purpose of increasing the p-type carrier concentration and establishing the effect of concentration of Cu on structural, optical, and electrical properties of ZnTe thin films to consider their potential application in electronic devices. According to X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible spectroscopy, and Hall effect results, ZnTe and ZnTe:Cu films correspond to polycrystalline zinc–blende phase with preferential orientation in (111) plane. Optical characterization results indicate that as-deposited films (band gap?=?2.16 eV) exhibit a band gap decrease as function of the increase of Cu concentration (2.09–1.64 eV), while, annealed films exhibit a decrease from 1.75 to 1.46 eV, as the Cu concentration increases. Lastly, Hall effect results show that ZnTe films correspond to a p-type semiconductor with a carrier concentration of 3?×?1013 cm?3 and a resistivity of 1.64?×?105 Ω?cm. ZnTe:Cu films remain like a p-type material and present an increasing carrier concentration (from 3.8?×?1015 to 1.26?×?1019 cm?3) as function of Cu concentration and a decreasing resistivity (from 7.01?×?103 to 2.6?×?10?1 Ω cm). ZnTe and ZnTe:Cu thin films, with the aforementioned characteristics, can find potential application in electronic devices, such as, solar cells and photodetectors.  相似文献   

5.
The optical and electrical properties of electron-irradiated Cu(In,Ga)Se2 (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 × 1018 cm− 2. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing JSC and increasing Rs reflected the influence of irradiated ZnO:Al, and decreasing VOC and increasing Rsh mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.  相似文献   

6.
Zinc oxide (ZnO) nanosheets have demonstrated outstanding electrical and optical properties, which are well suited for ultraviolet (UV) photodetectors. However, they have a high density of intrinsically unfilled traps, and it is difficult to achieve p‐type doping, leading to the poor performance for low light level switching ratio and a high dark current that limit practical applications in UV photodetection. Here, UV photodetectors based on ZnO nanosheets are demonstrated, whose performance is significantly improved by using a ferroelectric localized field. Specifically, the photodetectors have achieved a responsivity of up to 3.8 × 105 A W?1, a detectivity of 4.4 × 1015 Jones, and a photocurrent gain up to 1.24 × 106. These device figures of merit are far beyond those of traditional ZnO ultraviolet photodetectors. In addition, the devices' initial dark current can be easily restored after continuous photocurrent measurement by using a positive gate voltage pulse. This study establishes a new approach to produce high‐sensitivity and low‐dark‐current ultraviolet photodetectors and presents a crucial step for further practical applications.  相似文献   

7.
Copper doped ZnO (ZnO:Cu) nanostructured films with magnetoresistive behavior were produced by growing ZnO/Cu/ZnO arrays at room temperature (RT) by the sputtering technique on corning glass substrates. The arrays were made with two electrical insulating ZnO films of 50 and 105 nm, and a Cu film of 5 nm, both materials were deposited at RT by the RF- and DC-sputtering technique, respectively. The processing method involves two stages that proceed in the course of the growth process, the main one is originated by the non-equilibrium regime of the sputtering technique, and the second is the diffusion-redistribution of the intermediate Cu film towards the neighborhood ZnO layers aided by the nanocrystalline films character. The influence of applying an additional annealing stage to the arrays in N2 atmosphere at 250 and 350 °C by periods of 30 min were studied. The resistivity of the ZnO:Cu films can be varied from 0.0034 to 2.83 Ω-cm, corresponding to electron concentrations of 1.12?×?1021 and 7.85?×?1017 cm?3 with carrier mobility of 1.6 and 2.8 cm2/V s. Measured changes on the magnetoresistance behavior of the films at RT were of ?R?~?3% for annealed samples with electron concentration of 1.12?×?1021 cm?3. The X-ray diffraction measurements show that the films are comprised of nanocrystallites with dimensions between 13 and 20 nm in size with preferred (002) orientation. The transmittance of the films in the visible region was of 83% with an optical band gap of ~?3.3 eV for the low-resistivity samples.  相似文献   

8.
Self‐powered photodetectors (PDs) based on inorganic metal halide perovskites are regarded as promising alternatives for the next generation of photodetectors. However, uncontrollable film growth and sluggish charge extraction at interfaces directly limit the sensitivity and response speed of perovskite‐based photodetectors. Herein, by assistance of an atomic layer deposition (ALD) technique, CsPbBr3 perovskite thin films with preferred orientation and enlarged grain size are obtained on predeposited interfacial modification layers. Thanks to improved film quality and double side interfacial engineering, the optimized CsPbBr3 (Al2O3/CsPbBr3/TiO2, ACT) perovskite PDs exhibit outstanding performance with ultralow dark current of 10?11 A, high detectivity of 1.88 × 1013 Jones and broad linear dynamic range (LDR) of 172.7 dB. Significantly, excellent long‐term environmental stability (ambient conditions >100 d) and flexibility stability (>3000 cycles) are also achieved. The remarkable performance is credited to the synergistic effects of high carrier conductivity and collection efficiency, which is assisted by ALD modification layers. Finally, the ACT PDs are successfully integrated into a visible light communication system as a light receiver on transmitting texts, showing a bit rate as high as 100 kbps. These results open the window of high performance all‐inorganic halide perovskite photodetectors and extends to rational applications for optical communication.  相似文献   

9.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

10.
Ultraviolet (UV) photodetectors based on pure zinc oxide (ZnO) and Ag-doped ZnO (Ag:ZnO) thin films with different Ag doping contents (0.05, 0.15, 0.65, 1.30 and 2.20 %) have been prepared by sol–gel technique. Photoresponse characteristics of the prepared detectors have been studied for UV radiation of λ = 365 nm and intensity = 24 μW/cm2. The Ag:ZnO thin film-based photodetector having an optimum amount of 0.15 at. wt% Ag dopant exhibits a high photoconductive gain (K = 1.32 × 103) with relatively fast recovery (T 37 % = 600 ms) and minimal persistence in comparison to other prepared photodetectors. The incorporation of Ag dopant (≤0.15 %) at Zn lattice sites (Agzn) in ZnO creates acceptor levels in the forbidden gap, thereby reducing the value of dark current. Upon illumination with UV radiation, the photogenerated holes recombine with the captured electrons at the Agzn sites. The photogenerated electrons increase the concentration of conduction electrons, thereby giving an enhanced photoresponse for Ag:ZnO photodetector (0.15 % Ag). At higher dopant concentration (≥0.65 %), Ag incorporated at the interstitial sites of ZnO leads to the formation of deep energy levels below the conduction band along with increase in oxygen-related defects, thereby giving higher values of dark current. The incorporation of Ag at interstitial sites results in degradation of photoresponse along with the appearance of persistence in recovery of the photodetector in the absence of UV radiation.  相似文献   

11.
2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi2Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi2Se3 grid electrodes by copper‐atom intercalation is presented. These Cu‐intercalated 2D Bi2Se3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi2Se3 grid electrodes is greatly improved from 900 Ω sq?1, 68% to 300 Ω sq?1, 82% in the visible range; with better performance of 300 Ω sq?1, 91% achieved in the near‐infrared region. These unique properties of Cu‐intercalated topological insulator grid nanostructures may boost their potential applications in high‐performance optoelectronics, especially for infrared optoelectronic devices.  相似文献   

12.
In this study, we report a comparative study of the structural, morphological, and optical properties of the deposited ZnO thin films on Poly Propylene Carbonate (PPC) and glass substrates by direct current (DC) sputtering technique. X-ray diffraction (XRD) spectra of the films on PPC and glass substrates show mainly the ZnO (002) diffraction peaks at 2θ = 34.1 and 34.3o with full width at half maximum (FWHM) of 0.31 and 0.34o, respectively. Scanning electron microscopy (SEM) images show that both ZnO thin films have smooth surface. Photoluminescence (PL) spectra show two peaks, the first intense peak was found in the UV region. The second weak peak was observed in the visible region. The transmission and absorption spectra of the ZnO thin films deposited on both substrates showed that the films have good transmission in the visible region and a good absorption in the UV region. The optical energy gap (E g) values of the deposited ZnO thin films on PPC plastic and glass substrates were derived from absorption measurements and it found to be 3.38 and 3.40 eV, respectively.  相似文献   

13.
2D hybrid perovskites have shown great promise in the photodetection field, due to their intriguing attributes stemming from unique structural architectures. However, the great majority of detectors based on this 2D system possess a relatively low response speed (≈ms), making it extremely urgent to develop new candidates for superfast photodetection. Here, a new organic–inorganic hybrid perovskite, (PA)2(FA)Pb2I7 (EFA, where PA is n‐pentylaminium and FA is formamidine), which features the 2D Ruddlesden–Popper type perovskite framework that is composed of the corner‐sharing PbI6 octahedra is reported. Significantly, photodetectors fabricated on highly oriented thin films, which exhibit a perfect orientation parallel to 2D inorganic perovskite layers, exhibit a superfast response time up to ≈2.54 ns. To the best of the knowledge, this figure‐of‐merit catches up with that of the top‐ranking commercial materials, and sets a new record for 2D hybrid perovskite photodetectors. Moreover, extremely high photodetectivity (≈1.73 × 1014 Jones, under an incident power intensity of ≈46 µW cm?2), considerable switching ratios (>103), and low dark current (≈10 pA) are also achieved in the detector, indicating its great potential for high‐efficiency photodetection. These results shed light on the possibilities to explore new 2D candidates for assembling future high‐performance optoelectronic devices.  相似文献   

14.
Low‐temperature solution processing opens a new window for the fabrication of oxide semiconductors due to its simple, low cost, and large‐area uniformity. Herein, by using solution combustion synthesis (SCS), p‐type Cu‐doped NiO (Cu:NiO) thin films are fabricated at a temperature lower than 150 °C. The light doping of Cu substitutes the Ni site and disperses the valence band of the NiO matrix, leading to an enhanced p‐type conductivity. Their integration into thin‐film transistors (TFTs) demonstrates typical p‐type semiconducting behavior. The optimized Cu5%NiO TFT exhibits outstanding electrical performance with a hole mobility of 1.5 cm2 V?1 s?1, a large on/off current ratio of ≈104, and clear switching characteristics under dynamic measurements. The employment of a high‐k ZrO2 gate dielectric enables a low operating voltage (≤2 V) of the TFTs, which is critical for portable and battery‐driven devices. The construction of a light‐emitting‐diode driving circuit demonstrates the high current control capability of the resultant TFTs. The achievement of the low‐temperature‐processed Cu:NiO thin films via SCS not only provides a feasible approach for low‐cost flexible p‐type oxide electronics but also represents a significant step toward the development of complementary metal–oxide semiconductor circuits.  相似文献   

15.
Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (Rsq) of zinc oxide layers grown on it. We explain this Rsq reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm− 2 were fabricated.  相似文献   

16.
Fe–Cu co-doped ZnO thin films deposited on silicon substrates were prepared by R.F. magnetron sputtering. The effects of various amounts of copper on the microstructure, surface morphology, composition, and magnetic properties of ZnO thin films were examined. The results of the experiments show that the structures of the ZnO thin films grown on the silicon substrate have a preferred orientation of (002). By increasing the copper concentration, the Fe ions exist as Fe2+ in the Fe0.12CuxZn0.88−xO system, but Cu2+ and Cu1+ ions coexist when the Cu replaces the Zn. In addition, the ZnO thin films show ferromagnetic behaviour at room temperature and the largest saturation magnetization (Ms) is 5.64 × 104 A/m for the as-grown Fe0.12Cu0.02Zn0.86O thin film.  相似文献   

17.
2D ternary systems provide another degree of freedom of tuning physical properties through stoichiometry variation. However, the controllable growth of 2D ternary materials remains a huge challenge that hinders their practical applications. Here, for the first time, by using a gallium/indium liquid alloy as the precursor, the synthesis of high‐quality 2D ternary Ga2In4S9 flakes of only a few atomic layers thick (≈2.4 nm for the thinnest samples) through chemical vapor deposition is realized. Their UV‐light‐sensing applications are explored systematically. Photodetectors based on the Ga2In4S9 flakes display outstanding UV detection ability (R λ = 111.9 A W?1, external quantum efficiency = 3.85 × 104%, and D* = 2.25 × 1011 Jones@360 nm) with a fast response speed (τring ≈ 40 ms and τdecay ≈ 50 ms). In addition, Ga2In4S9‐based phototransistors exhibit a responsivity of ≈104 A W?1@360 nm above the critical back‐gate bias of ≈0 V. The use of the liquid alloy for synthesizing ultrathin 2D Ga2In4S9 nanostructures may offer great opportunities for designing novel 2D optoelectronic materials to achieve optimal device performance.  相似文献   

18.
We report the observation of room temperature ferromagnetism (FM) in Cu-doped ZnO (ZnO: Cu) thin films synthesized by sol–gel technique. While donor Al3+ cations are introduced into the ZnO: Cu films, the saturation magnetization decreases rapidly. Cu 2p core-level X-ray photoelectronic spectra demonstrate that the FM is strongly correlated with Cu2+ cations (3d 9 configuration). To further study the relationship between the FM and acceptors, Na+ cations are also introduced into the ZnO: Cu films to increase the saturation magnetization. The enhanced FM in the (Cu, Na)-codoped ZnO is suggested to be due to the hybridization between delocalized holes and spin-split Cu 3d states.  相似文献   

19.
Graphene/ZnO nanocomposites photodetectors hold great potential for UV detection because of the combination of photosensitive ZnO and high electron-mobility graphene. In this paper, graphene oxide (GO)/ZnO nanorods photoconductive photodetector with seed layer of GO and ZnO nanocrystals (NCs) hybrids is fabricated via a low-cost solution process. Uniform and oriented GO/ZnO nanorods have been obtained due to the positive role of GO in the growth process of ZnO nanorods, which gives rise to less light scattering and thereby stronger absorption and enhanced photocurrent. When the growth time is 1 h, the optimum photocurrent of GO/ZnO nanorods is about 9.4 times than pure ZnO nanorods, meanwhile, the corresponding detectivity reaches 7.17?×?1011 cm Hz1/2 W?1. In addition, owing to the high carrier mobility of graphene, the response time t 90 of GO/ZnO photodetector beneficially decreases to ~1 s, which is much faster than many other GO/ZnO hybrid photodetectors.  相似文献   

20.
In this work, a whole manufacturing process of the curved copper nanowires (CCNs) based flexible transparent conductive electrode (FTCE) is reported with all solution processes, including synthesis, coating, and networking. The CCNs with high purity and good quality are designed and synthesized by a binary polyol coreduction method. In this reaction, volume ratio and reaction time are the significant factors for the successful synthesis. These nanowires have an average 50 nm in width and 25–40 μm range in length with curved structure and high softness. Furthermore, a meniscus‐dragging deposition (MDD) method is used to uniformly coat the well‐dispersed CCNs on the glass or polyethylene terephthalate substrate with a simple process. The optoelectrical property of the CCNs thin films is precisely controlled by applying the MDD method. The FTCE is fabricated by networking of CCNs using solvent‐dipped annealing method with vacuum‐free, transfer‐free, and low‐temperature conditions. To remove the natural oxide layer, the CCNs thin films are reduced by glycerol or NaBH4 solution at low temperature. As a highly robust FTCE, the CCNs thin film exhibits excellent optoelectrical performance (T = 86.62%, R s = 99.14 Ω ?1), flexibility, and durability (R/R 0 < 1.05 at 2000 bending, 5 mm of bending radius).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号