首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
The reciprocal mechanical interaction of engineered materials with biointerfaces have long been observed and exploited in biomedical applications. It contributes to the rise of biomechano‐responsive materials and biomechano‐stimulatory materials, constituting the biomechano‐interactive interfaces. Here, endogenous and exogenous biomechanical stimuli available for mechanoresponsive interfaces are briefed and their mechanistic responses, including deformation and volume change, mechanomanipulation of physical and chemical bonds, dissociation of assemblies, and coupling with thermoresponsiveness are summarized. The mechanostimulatory materials, however, are capable of delivering mechanical cues, including stiffness, viscoelasticity, geometrical constraints, and mechanical loads, to modulate physiological and pathological behaviors of living tissues through the adaptive cellular mechanotransduction. The biomechano‐interactive materials and interfaces are widely implemented in such fields as mechanotriggered therapeutics and diagnosis, adaptive biophysical sensors, biointegrated soft actuators, and mechanorobust tissue engineering, which have offered unprecedented opportunities for precision and personalized medicine. Pending challenges are also addressed to shed a light on future advances with respect to translational implementations.  相似文献   

3.
4.
5.
The aim of the present study was to verify the potential of chitosan-thio-butyl-amidine (TBA) microspheres as carrier systems for controlled drug delivery. In this study microspheres were prepared utilizing water in oil (w/o) emulsification solvent evaporation technique. A concentration of 0.5% of chitosan-TBA conjugate displaying 100 µM thiol groups per gram polymer was used in the aqueous phase of the emulsion in order to prepare microspheres. The obtained non-aggregated free-flowing microspheres were examined with conventional light microscope as well as scanning electron microscopy (SEM). The microscopic images indicated that the prepared chitosan-TBA microspheres were of spherical shape and smooth surface while microparticles obtained from the unmodified chitosan were of porous structure and non-spherical shape. Particle size distribution was determined to be in the range from 1 to 59 µm. The free thiol group content of chitosan-TBA microspheres prepared with an aqueous phase of pH 2, 5, and 6.5 were determined to be 71.4, 49.4, and 8.2 µM/g polymer, respectively. Furthermore, results attained from in vitro release studies with fluorescein isothiocyanate labelled dextran (FITC-dextran) loaded chitosan-TBA microspheres showed a controlled release rate for more than three hours while the control reached the maximum peak level of release already within an hour. According to these results, chitosan-TBA microspheres seem to be a promising tool in transmucosal drug delivery for poorly absorbed therapeutic agents.  相似文献   

6.
Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with “negative” contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1-weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of “positive” contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.  相似文献   

7.
Puncture is a common operation in surgery, which involves all kinds of tissue materials with different geometry and mechanical properties. As a new cross-disciplinary research area, Virtual Surgery (VS) makes simulation of soft tissue in puncture operation possible in virtual environment. In this paper, we introduce a VS-based puncture system composed by three-layer soft tissue, simulated with spherical harmonic function (SHF), which is covered with a force mesh, constructed by mass spring model (MSM). The two models are combined together with a parameter of SHF named surface radius, which provides MSM with real-time deformation data needed in force calculation. Meanwhile, force calculation, divided into the surface spring force and the puncture damping force, makes the force presentation better accord to the corresponding tissue characteristics. Moreover, a deformation resumption algorithm is leveraged to simulate the resumption phenomenon of the broken tissue surface. In evaluation experiment, several residents are invited to grades our model along with other four mainstream soft tissue models in terms of 7 different indicators. After the evaluation, the scores are analyzed by a comprehensive weighted grading method. Experiment results show that the proposed model has better performance during puncture operation than other models, and can well simulate surface resumption phenomenon when tissue surface is broken.  相似文献   

8.
考虑软时间窗下的车辆路径问题,客户点常伴有同时取送货的双重需求。针对此类问题,通过对软时间窗、车辆在途前后时间关系及二者融合问题进行刻画,同时将车辆行驶距离、车辆使用数、违反软时间窗总时间、客户满意度等纳入综合考量,构建相应混合整数非线性规划(mixed integer nonlinear programming, MINLP)模型。设计相应多目标优化求解算法,运用理想点法对目标函数进行转化,将多目标优化问题转化为单目标优化问题。结合相应算例集,运用LINGO 17.0全局求解程序求得每组算例的全局最优解。结果表明,针对带软时间窗的同时取送货车辆路径问题(vehicle routing problem with simultaneous pick-up and delivery and soft time windows, VRPSPDSTW),所建模型及算法是有效且可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号