共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of calcination temperatures and additives for 10 wt.% Cu/γ-Al 2O 3 catalysts on the surface properties and reactivity for NO reduction by C 3H 6 in the presence of excess oxygen were investigated. The results of XRD and XPS show that the 10 wt.% Cu/γ-Al 2O 3 catalysts calcined below 973 K possess highly dispersed surface and bulk CuO phases. The 10 wt.% Cu/γ-Al 2O 3 and 10 wt.% Mn–10 wt.% Cu/γ-Al 2O 3 catalysts calcined at 1073 K possess a CuAl 2O 4 phase with a spinel-type structure. In addition, the 10 wt.% La–10 wt.% Cu/γ-Al 2O 3 catalyst calcined at 1073 K possesses a bulk CuO phase. The result of NO reduction by C 3H 6 shows that the CuAl 2O 4 is a more active phase than the highly dispersed and bulk CuO phase. However, the 10 wt.% Mn–10 wt.% Cu/γ-Al 2O 3 catalyst calcined at 1073 K possesses significantly lower reactivity for NO reduction than the 10 wt.% Cu/γ-Al 2O 3 catalyst calcined at 1073 K, although these catalysts possess the same CuAl 2O 4 phase. The low reactivity for NO reduction for 10 wt.% Mn–10 wt.% Cu/γ-Al 2O 3 catalyst calcined at 1073 K is attributed to the formation of less active CuAl 2O 4 phase with high aggregation and preferential promotion of C 3H 6 combustion to CO x by MnO 2. The engine dynamometer test for NO reduction shows that the C 3H 6 is a more effective reducing agent for NO reduction than the C 2H 5OH. The maximum reactivity for NO reduction by C 3H 6 is reached when the NO/C 3H 6 ratio is one. 相似文献
2.
The performance of Ir/γ-Al 2O 3 catalyst for the decomposition of high concentration hydrogen peroxide was investigated in a monopropellant thruster. The changes of ignition delay ( t0), chamber pressure ( Pc) and catalyst bed temperature ( Tc) with the numbers of startup–shutdown cycles were proved to be effective indicators of catalyst bed efficiency. The fresh catalyst and the deactivated catalyst were characterized with H 2-TPR, XRD and XPS. It was found that catalyst oxidation and surface Sn poisoning are the major reasons of catalyst deactivation. 相似文献
3.
Monolayer CuCl/γ-Al 2O 3 sorbent was studied for desulfurization of a commercial jet fuel (364.3 ppmw S) and a commercial diesel (140 ppmw S). The sorbent was prepared by means of spontaneous monolayer dispersion methods. Deep desulfurization (sulfur levels of <1 ppmw) was accomplished with this sorbent using a fixed-bed adsorber. The CuCl/γ-Al 2O 3 sorbent was capable of removing 6.4 and 11.2 mg of sulfur per gram for jet fuel at breakthrough (at <1 ppmw S) and saturation, respectively. The same sorbent was capable of removing 0.94 and 1.8 mg of sulfur per gram for BP diesel at breakthrough and saturation, respectively. The difference in sulfur capacities for jet fuel and diesel was apparently caused by the difference in concentrations of strongly binding compounds, such as nitrogen heterocycles, heavy (polynuclear) aromatics and fuel additives. In comparison with CuCl/γ-Al 2O 3, Cu(I)Y zeolite has higher sulfur capacities but is less stable and can be easily oxidized to Cu(II)Y by fuel additives (such as oxygenates) and moisture and consequently loses π-complexation ability. However, all these cuprous π-complexation sorbents selectively adsorb thiophenic compounds over aromatics and olefins (as predicted by the high separation factors), which resulted in the observed desulfurization capability. A feasibility study is shown for efficient regeneration of CuCl/γ-Al 2O 3 using ultrasound at ambient temperature. Possible problems associated with desulfurization using π-complexation sorbents for commercial fuels are discussed. 相似文献
4.
The oxidation of CH 4 over Pt–NiO/δ-Al 2O 3 has been studied in a fluidised bed reactor as part of a major project on an autothermal (combined oxidation–steam reforming) system for CH 4 conversion. The kinetic data were collected between 773 and 893 K and 101 kPa total pressure using CH 4 and O 2 compositions of 10–35% and 8–30%, respectively. Rate–temperature data were also obtained over alumina-supported monometallic catalysts, Pt and NiO. The bimetallic Pt–NiO system has a lower activation energy (80.8 kJ mol −1) than either Pt (86.45 kJ mol −1) and NiO (103.73 kJ mol −1). The superior performance of the bimetallic catalyst was attributed to chemical synergy. The reaction rate over the Pt–NiO catalyst increased monotonically with CH 4 partial pressure but was inhibited by O 2. At low partial pressures (<30 kPa), H 2O has a detrimental effect on CH 4 conversion, whilst above 30 kPa, the rate increased dramatically with water content. 相似文献
5.
通过制备高纯度的前驱体湃铝石获得了η-Al 2O 3材料,采用XRD验证了η-Al 2O 3与γ-Al 2O 3在晶相结构上的差异,比较了两者的表面形貌、织构及酸碱性能,结果显示,η-Al 2O 3与γ-Al 2O 3的比表面积相当,但η-Al 2O 3具有更弱的弱碱位和较少的强碱位,并拥有丰富的中等强度酸性位。将η-Al 2O 3与γ-Al 2O 3作为催化剂应用于CS 2水解反应,结果表明,在(200~450) ℃测试温度范围内,η-Al 2O 3催化剂对CS 2的水解活性始终优于γ-Al 2O 3,两种催化剂上CS 2反应的浓度效应也明显不同,推测与它们的酸碱性质影响了对CS 2的吸附能力有关,导致两者催化CS 2水解反应遵循了不同的机制。 相似文献
6.
This article describes a novel hydrothermal deposition method for preparing highly dispersed NiW/γ-Al 2O 3 catalysts and demonstrates its advantages over the conventional impregnation method. Via the hydrothermal precipitation reactions between sodium tungstate and hydrochloric acid and between nickel nitrate and urea, respectively, the active species W and Ni were deposited on γ-Al 2O 3. In the hydrothermal deposition of WO 3, a surfactant hexadecyltrimethyl ammonium bromide (CTAB) was used to prevent the aggregation of WO 3. The characterization results obtained by means of X-ray photoelectron spectroscopy (XPS), N 2 adsorption and high-resolution transmission electron microscopy (HRTEM) measurements showed that compared with the catalyst prepared by the conventional impregnation method, the catalyst with the same metal contents prepared by the hydrothermal deposition had much higher W and Ni dispersion, higher specific surface area, larger pore volume, the significantly decreased slab length and slightly increased stacking degree of sulfided W species, leading to the significantly enhanced dibenzothiophene (DBT) hydrodesulfurization (HDS) activity. The DBT HDS assessment results also revealed that the catalyst containing 17.7 wt% WO 3 and 2.4 wt% NiO prepared by the hydrothermal deposition method had the similar DBT HDS activity as a commercial NiW/γ-Al 2O 3 catalyst containing 23 wt% WO 3 and 2.6 wt% NiO, resulting in the greatly decreased amount of active metals for achieving the same HDS activity. 相似文献
7.
采用微波辅助浸渍法、微波管式焙烧制备了Ni-W-P/γ-Al 2O 3催化剂,并以中低温煤焦油轻油为原料,在固定床反应器装置上评价了催化剂的加氢活性。通过N 2吸附-脱附、GC-MS等方法对催化剂的物化性能及加氢产物油进行表征,并根据FHH模型,计算出催化剂的表面分形维数。结果表明,添加助剂P可调节催化剂的微观孔结构,改变催化剂的酸性分布与强度,并有助于加氢饱和反应的进行;当助剂P含量为0.9%时,催化剂的加氢脱硫、脱氮活性最高,加氢饱和性能最好;焙烧温度直接影响催化剂物性参数,当温度为500 ℃时,加氢活性最高、加氢产物品质最佳;微波焙烧相比常规制备方法,可增加晶粒烧结程度,形成更多三维孔隙结构,为加氢反应提供更大的表面和空间,且增加中等强度酸的酸量,更有助于表面活性组分的分散及硫化性的增强。 相似文献
8.
以γ-Al 2O 3为载体,采用等体积分步浸渍法制备了以Ni为活性组分,La、Ce、Fe、Cr、Co为助剂的催化剂M/γ-Al 2O 3,在固定床管式反应器中研究了M/γ-Al 2O 3催化剂的性能,考察了反应温度、水碳比和空速对氢产率的影响,并对催化剂进行XRD、SEM和BET表征。结果表明,NiLaCeFeCrCo/γ-Al 2O 3催化剂具有较好的催化性能,在反应温度700 ℃、水碳物质的量比10和空速6 min -1的条件下,氢产率达到27.335 mol·mol -1,并在300 min内表现出较好的活性,平均氢产率为21.966 mol·mol -1。 相似文献
9.
以廉价无机铝盐硫酸铝为原料,氨水为沉淀剂,十二烷基硫酸钠为添加剂,采用简单沉淀法制备得到较大比表面积γ-Al 2O 3。通过N 2低温物理吸附-脱附、X射线衍射、红外光谱、热重、元素分析、扫描及透射电镜等,研究制备过程中沉淀温度、溶液pH值和添加剂用量对产物γ-Al 2O 3及其前驱体的晶相结构、形貌织构等性质的影响。结果表明,在沉淀温度75 ℃、硫酸铝浓度0.25 mol·L -1、溶液pH=9.0、老化时间12 h和n(十二烷基硫酸钠)∶n[Al 2(SO 4) 3]=0.375∶1条件下,所得前驱体(拟薄水铝石)经600 ℃焙烧后,可获得大比表面积(416.65 m 2·g -1)γ-Al 2O 3,并且样品中因十二烷基硫酸钠添加,引入的S及Na等杂质含量极少。 相似文献
10.
The mechanism of the hydrodenitrogenation of the mixed dialkyl- and trialkylamines C 1NHC 6 and C 1N(C 6) 2 was studied over sulfided NiMo/γ-Al 2O 3 at 280 °C and 3 MPa. C 1NHC 6 reacted by disproportionation to C 1N(C 6) 2 as well as C 6N(C 1) 2 and by substitution by H 2S to methylamine and hexanethiol as well as hexylamine and methanethiol. C 1N(C 6) 2 reacted by substitution with H 2S to C 1NHC 6 and C 6NHC 6 and methane- and hexanethiol. The probability of breaking the C 1N bond was only slightly smaller than of breaking the C 6N bond in C 1N(C 6) 2. In the reaction of an equimolar mixture of C 5NHC 5 and C 1N(C 6) 2 both C 1N(C 5) 2 and C 6N(C 5) 2 were formed. The transfer of the methyl group in these reactions cannot be explained by imine and enamine intermediates, only iminium cation intermediates can explain all the products in the hydrodenitrogenation of monoalkyl-, dialkyl- and trialkylamines. 相似文献
11.
The role of ozone was studied for two different configurations combining non-thermal plasma (NTP) and heterogeneous catalysis, namely the use of a gas phase plasma with subsequent exposure of the effluent to a catalyst in a packed-bed reactor (post-plasma treatment) and the placement of the catalyst directly in the discharge zone (in-plasma catalysis). Non-porous and porous alumina and silica were deployed as model catalysts. The oxidation of immobilised hydrocarbons, toluene as a volatile organic compound and CO as an inorganic pollutant were studied in both operational modes. While conversion and selectivity of hydrocarbon oxidation in the case of catalytic post-plasma treatment can be fully explained by the catalytic decomposition of O3 on γ-Al2O3, the conversion processes for in-plasma catalysis are more complex and significant oxidation was also measured for the other three materials (-Al2O3, quartz and silica gel). It became obvious that additional synergetic effects can be utilised in the case of in-plasma catalysis due to short-lived species formed in the NTP. The capability of porous alumina for ozone decomposition was found to be correlated with its activity for oxidation of carbon-containing agents. It could be clearly shown that the reaction product CO2 poisons the catalytic sites at the γ-Al2O3 surface. The catalytic activity for O3 decomposition can be partially re-established by NTP treatment. However, for practical purposes the additional reaction pathways provided by in-plasma catalytic processes are essential for satisfactory conversion and selectivity. 相似文献
12.
The effect of oxygen concentration on the pulse and steady-state selective catalytic reduction (SCR) of NO with C 3H 6 over CuO/γ-Al 2O 3 has been studied by infrared spectroscopy (IR) coupled with mass spectroscopy studies. IR studies revealed that the pulse SCR occurred via (i) the oxidation of Cu 0/Cu + to Cu 2+ by NO and O 2, (ii) the co-adsorption of NO/NO 2/O 2 to produce Cu 2+(NO 3−) 2, and (iii) the reaction of Cu 2+(NO 3−) 2 with C 3H 6 to produce N 2, CO 2, and H 2O. Increasing the O 2/NO ratio from 25.0 to 83.4 promotes the formation of NO 2 from gas phase oxidation of NO, resulting in a reactant mixture of NO/NO 2/O 2. This reactant mixture allows the formation of Cu 2+(NO 3−) 2 and its reaction with the C 3H 6 to occur at a higher rate with a higher selectivity toward N 2 than the low O 2/NO flow. Both the high and low O 2/NO steady-state SCR reactions follow the same pathway, proceeding via adsorbed C 3H 7---NO 2, C 3H 7---ONO, CH 3COO −, Cu 0---CN, and Cu +---NCO intermediates toward N 2, CO 2, and H 2O products. High O 2 concentration in the high O 2/NO SCR accelerates both the formation and destruction of adsorbates, resulting in their intensities similar to the low O 2/NO SCR at 523–698 K. High O 2 concentration in the reactant mixture resulted in a higher rate of destruction of the intermediates than low O 2 concentration at temperatures above 723 K. 相似文献
13.
The sulphur tolerance and thermal stability of a 2 wt% Ag/γ-Al 2O 3 catalyst was investigated for the H 2-promoted SCR of NO x with octane and toluene. The aged catalyst was characterised by XRD and EXAFS analysis. It was found that the effect of ageing was a function of the gas mix and temperature of ageing. At high temperatures (800 °C) the catalyst deactivated regardless of the reaction mix. EXAFS analysis showed that this was associated with the Ag particles on the surface of the catalyst becoming more ordered. At 600 and 700 °C, the deactivating effect of ageing was much less pronounced for the catalyst in the H 2-promoted octane-SCR reaction and ageing at 600 °C resulted in an enhancement in activity for the reaction in the absence of H 2. For the toluene + H 2-SCR reaction the catalyst deactivated at each ageing temperature. The effect of addition of low levels of sulphur (1 ppm SO 2) to the feed was very much dependent on the reaction temperature. There was little deactivation of the catalyst at low temperatures (≤235 °C), severe deactivation at intermediate temperatures (305 and 400 °C) and activation of the catalyst at high temperatures (>500 °C). The results can be explained by the activity of the catalyst for the oxidation of SO 2 to SO 3 and the relative stability of silver and aluminium sulphates. The catalyst could be almost fully regenerated by a combination of heating and the presence of hydrogen in the regeneration mix. The catalyst could not be regenerated in the absence of hydrogen. 相似文献
14.
The selective catalytic reduction (SCR) of nitric oxide by propene over Ir/Al 2O 3 under lean-burn conditions (1000 vpm NO, 2000 vpm C 3H 6, 500 vpm CO, 10 vol.% O 2) was studied. The activity was shown to be strongly enhanced after exposure of the catalyst at 600°C under the reaction mixture, irrespective of the oxidising or reducing pre-treatment. Simultaneously, the Ir dispersion decreased from 78 to 10%. The influence of each component of the reaction mixture on the activation process was examined. The presence of both CO and O 2 was found to be necessary to activate Ir/Al 2O 3 while NO would not be. In situ FT-IR results revealed that initially fully oxidised Ir particles partially reduced in the feed to form Ir 0 reduced surface sites ( νCO at 2060 cm −1) which adsorbed CO up to 350–400°C. The activation under reactants was related to the formation of these sites. The presence of reduced (or partially reduced) Ir sites, possibly siting at the surface of IrO 2 particles and stabilised by CO adsorption, was proposed to be responsible for the SCR activity. 相似文献
15.
The influence of the addition of 1–10 vol.% of hydrogen or carbon dioxide to the feed during the partial oxidation of methane was studied over a NiO/γ-Al 2O 3 catalyst. The addition of H 2 decreases the conversion and syngas selectivity. This decrease of performance seems to be related to a higher reduction of the catalyst due to the H 2 co-feeding. The addition of CO 2 also appears unfavorable to the production of hydrogen but increases the CO yield. A combination of the dry reforming and the reverse water gas shift reactions is suggested to explain the observed modifications in the product yields. 相似文献
16.
采用等体积共浸渍法和分步浸渍法制备Pt-Sn/γ-Al 2O 3催化剂,并在固定床反应器上进行正丁烷脱氢实验研究。结果表明,与共浸渍法相比,分步浸渍法制备的催化剂表现出更高的催化活性。采用等体积浸渍法制备催化剂时,活性组分与载体之间会发生竞争吸附作用,这会影响活性金属组分在载体表面的分散度,进而影响催化剂活性。 相似文献
17.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NO x adsorber catalyst, Pt/K/Al 2O 3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al 2O 3 phase with associated hydroxyl groups at the surface, and an alkalized-Al 2O 3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al 2O 3 and 65% for the alkalized-Al 2O 3. NO 2 and CO 2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al 2O 3 adsorbs 0.087 μmol CO 2/m 2and 2.0 μmol NO 2/m 2, and Pt/K/Al 2O 3 adsorbs 2.0 μmol CO 2/m 2and 6.4 μmol NO 2/m 2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al 2O 3 during both lean and rich periods of the NO x adsorber catalyst cycle. 相似文献
18.
The phase diagram of the Al 2O 3–ZrO 2–Nd 2O 3 system was constructed in the temperature range 1250–2800 °C. The liquidus surface of the phase diagram reflects the preferentially eutectic interaction in the system. Two new ternary and one new binary eutectics were found. The minimum melting temperature is 1675 °C and it corresponds to the ternary eutectic Nd 2O 3·11Al 2O 3 + F-ZrO 2 + NdAlO 3. The solidus surface projection and the schematic of the alloy crystallization path confirm the preferentially congruent character of phase interaction in the ternary system. The polythermal sections present the complete phase diagram of the Al 2O 3–ZrO 2–Nd 2O 3 system. No ternary compounds or regions of remarkable solid solution were found in the components or binaries in this ternary system. 相似文献
19.
A deoxidizing catalyst was prepared in this paper. Several characterization techniques (XRD, SEM–EDS, TEM, TPD and TPR) were used to study its structure and properties. A normal pressure micro-reactor was built to study its deoxidizing performance. Results show that when inlet O 2 concentration was 0.1%, space velocity was 3000–12 000 h −1 and operation temperature was above 80 °C, the outlet residual O 2 can be as low as 1.0 × 10 −6 (v/v). 300 h continuous operation shows that its deoxidizing activity was stable. Through comparison of the deoxidizing activities for fresh and deactivated catalyst and by simulating the water vapor contents in system, the mechanism of deactivation and reactivation was studied. 相似文献
20.
对柠檬醛-乙酸乙酯溶液中柠檬醛在La 2O 3/γ-Al 2O 3催化剂上等温吸附行为进行了研究。结果表明,30 ℃柠檬醛在La 2O 3/γ-Al 2O 3催化剂上的吸附动力学符合准二阶吸附动力学模型,吸附动力学方程为:1/q t=2.350/t+0.063 3(R 2=0.998 5)。(30~65) ℃柠檬醛在La 2O 3/γ-Al 2O 3催化剂上的等温吸附符合Langmuir方程,温度升高使柠檬醛的饱和吸附量增加,吸附热为32.19 kJ·mol -1。 相似文献
|