首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest fires could be important sources of both N and P.  相似文献   

2.
The enantiomeric composition of seven chiral PCB congeners was measured in the Lake Superior aquatic food web sampled in 1998, to determine the extent of enantioselective biotransformation in aquatic biota. All chiral PCB congeners studied (CBs 91, 95, 136, 149, 174, 176, and 183) biomagnified in the Lake Superior aquatic food web, based on biomagnification and food web magnification factors greater than unity. PCB atropisomers were racemic in phytoplankton and zooplankton, suggesting no biotransformation potential toward PCBs for these low trophic level organisms. However, Diporeia and mysids had significantly nonracemic residues for most chiral congeners studied. This observation suggests that these macrozooplankton can stereoselectively metabolize chiral congeners. Alternatively, macrozooplankton obtained nonracemic residues from feeding on organic-rich suspended particles and sediments, which would imply that stereoselective microbial PCB biotransformation may be occurring in Lake Superior sediments at PCB concentrations far lower than that previously associated with such activity. Widely nonracemic PCB residues in forage fish (lake herring, rainbow smelt, and slimy sculpin) and lake trout suggest a combination of both in vivo biotransformation and uptake of nonracemic residues from prey for these species. Minimum biotransformation rates, calculated from enantiomer mass balances between predators and prey, suggest metabolic half-lives on the order of 8 yr for CB 136 in lake trout and 2.6 yr for CB 95 in sculpins. This result suggests that significant biotransformation may occur for metabolizable PCB congeners over the lifespan of these biota. This study highlights the potential of chiral analysis to study biotransformation processes in food webs.  相似文献   

3.
A statewide investigation of urban creek sediment toxicity was conducted in California in recognition of increased incidences of toxicity linked to pyrethroid pesticides. The goals were to examine the spatial occurrence and magnitude of sediment toxicity in California urban creeks, and to examine the role of pyrethroids in toxic urban creek sediment samples. After a preliminary screening of 90 sites, 30 creeks were sampled in eight geographical regions. Sediment toxicity was assessed using 10 day bioassays with the resident amphipod Hyalella azteca. Bioassays were conducted at two test temperatures of 23 degrees C and at 15 degrees C to provide evidence of the cause of toxicity, and to more accurately reflect ambient environmental temperatures. Twenty-five of 30 samples were toxic when tested at 23 degrees C, and all 30 samples were toxic when tested at 15 degrees C. The magnitude of toxicity increased in samples tested at 15 degrees C suggesting the influence of pyrethroids, which are more toxic at colder temperatures. Pyrethroids were present in all sediment samples and were the only compounds detected at concentrations toxic to H. azteca. Bifenthrin was the pyrethroid of greatest toxicological concern, occurring in all 30 samples at concentrations up to 219 ng/g. Pyrethroid contamination of urban creeks was most severe in the Los Angeles, Central Valley, and San Diego regions, respectively. However, pyrethroids were also linked to urban creek aquatic toxicity in all regions sampled, including the less urbanized areas of the North Coast and Lake Tahoe.  相似文献   

4.
A large number of herbicide transformation products has been detected in surface waters and groundwaters of agricultural areas, often even in higher concentrations and more frequently than their parent compounds. However, their input dynamics and fate in surface waters are still rather poorly understood. This study compares the aquatic fate, concentration levels, and dynamics of the transformation product metolachlor ethanesulfonic acid (metolachlor ESA) and its parent compound metolachlor, an often-used corn herbicide. To this end, laboratory photolysis studies were combined with highly temporally resolved concentration measurements and lake mass balance modeling in the study area of Lake Greifensee (Switzerland). It is found that the two compounds show distinctly different concentration dynamics in the lake tributaries. Concentration-discharge relationships for metolachlor ESA in the main tributary showed a high baseflow concentration and increasing discharge dependence during harvest season, whereas baseflow concentrations of metolachlor were negligible and the discharge dependence was restricted to the period immediately following application. From this it was estimated that 70% of the yearly load of metolachlor ESA to the lake was due to groundwater recharge, whereas, for metolachlor, the bigger part of the load, 50-80%, stemmed from event-driven runoff. Lake mass balance modeling showed that the input dynamics of metolachlor and metolachlor ESA are reflected in their concentration dynamics in the lake's epilimnion and that both compounds show a similar fate in the epilimnion of Lake Greifensee during the summer months with half-lives on the order of 100-200 days, attributable to photolysis and another loss process of similar magnitude, potentially biodegradation. The behavior of metolachlor ESA can likely be generalized to other persistent and highly mobile transformation products. In the future, this distinctly different behavior of mobile pesticide transformation products should find a more appropriate reflection in exposure models used in chemical risk assessment and in pesticide risk management.  相似文献   

5.
Pesticides such as pyrethroids have been frequently found in runoff water from urban areas and the offsite movement is a significant cause for aquatic toxicities in urban streams and estuaries. To better understand the origination of pesticide residues in urban runoff, we investigated the association of pyrethroid residues with loose particles in runoff water from concrete surfaces after treatment with commercial products of bifenthrin and permethrin. In runoff water generated from simulated precipitations after 1 to 89 d exposure under dry outdoor conditions, over 80% of the pesticides was found on particles >0.7 μm for most treatments. The solid-water partitioning coefficient (K(d)) on day 1 was estimated to be 2.4 × 10(3) to 1.1 × 10(5) L/kg for permethrin and bifenthrin on these solids. Except for solid formulations, the pesticide-laden particles likely originated from dust particles preexisting on the concrete before treatment and the disintegration of the surficial concrete matter through weathering. We consequently tested a simple sponge-wipe method to collect and analyze the loose particles on concrete. Concurrent analyses (n = 30) showed an excellent linear correlation between the amount of pesticides transferrable to runoff water and that on the wipe (R(2) = 0.78, slope = 1.13 ± 0.11, P < 0.0001). The fact that the linear relationship has a slope close to 1.0 suggests that this method may be used to predict pesticide residues available for contaminating runoff water before runoff actually occurs. The importance of loose particles should be considered when developing practices to mitigate pesticide runoff contamination from urban residential areas.  相似文献   

6.
Although most of forested watersheds in temperate and boreal regions are snow-covered for a substantial portion of the year, responses of biogeochemical processes under the snow pack to climatic fluctuations are poorly understood. We investigated responses of dissolved organic carbon (DOC) and surface water chemistry in stream and lake discharge waters draining the Arbutus Lake Watershed in the Adirondacks of New York State to climatic fluctuations during the snow-covered months from December through April. Interannual variability in stream discharge corresponded to changes in air temperature and snow pack depth across the winter months. Concentrations of DOC in stream water draining a subcatchment showed immediate positive responses to rising temperatures and subsequent increases in runoff during most snowmelt events. Increases in DOC concentrations usually coincided with decreases in pH and increases in total aluminum (Al) concentrations, while the correlations between concentrations of DOC and SO4(2-) or base cations were negative. Although changes in air temperature, snow pack depth, and runoff were all significantly correlated with stream water concentrations of major solutes, stepwise linear regression found that runoff was the best predictor of solute concentrations. Results of stepwise linear regression with long-term monthly monitoring data collected at the lake outlet showed weaker but still consistent climatic effects on interannual variations in concentrations of DOC and other solutes. Over the 17 winter periods from December 1983 through April 2000, changes in seasonal average concentrations of DOC, H+, and Al in lake discharge generally corresponded to interannual variations in temperature, precipitation, and runoff, while SO4(2-) and base cations displayed an opposite trend. The results suggest that snowmelt-mediated DOC responses to temperature fluctuations during the winter months might offset increases in the surface water pH caused by decreasing acidic deposition and pose a potential hazard of Al toxicity in surface waters.  相似文献   

7.
Haloacetic acids (HAAs) are persistent and mildly phytotoxic compounds that have been detected in many aquatic environments, including the waters of the Great Lakes. Sources of HAAs, especially of trifluoroacetic acid (TFA), are not well understood. In this study we assessed the influence of urbanization on the concentrations and profiles of HAAs in the Laurentian Great Lakes and in Lake Malawi, an African Great Lake. Vertical depth profiles for these compounds were taken for each of the Great Lakes with additional profiles taken 2 years later for Lakes Erie and Ontario. The results showed that while TFA was relatively constant throughout the water column, the chloroacetic acids (CAAs) varied with depth. There was a trend of increasing TFA proceeding from Lake Superior to Lake Ontario (18-150 ng/L). Total CAA concentrations were relatively constant throughout the lakes (approximately 500 ng/L) with dichloroacetic acid being the most abundant. No bromoacetic acids were detected. In the Detroit River, a connecting channel between Lakes Huron and Erie, the TFA values were similar to those in Lake Huron, but the CAAs levels were higher than in the upstream lakes and dependent on location, indicating inputs from urban areas along the river. These results were compared to those from Lake Malawi, which has a high population density within the watershed but no heavy industry. CAAs were nondetectable, and TFA concentrations were just at the detection limit (1 ng/L). Total HAA in the water column of Lakes Superior and Huron was compared to annual precipitation inputs at a site situated near both lakes. For Lake Huron, precipitation was a minor contributor to the total HAA inventory of the lake, but for Lake Superior precipitation could be the major contributor to the mass of HAA in this lake. Generally, high HAA levels paralleled the degree of industrial activity in the adjacent waters.  相似文献   

8.
Surface sediment cores from Oriole Lake (CA) were analyzed for organic carbon (OC), black carbon (BC), and their δ(13)C isotope ratios. Sediments displayed high OC (20-25%) and increasing BC concentrations from ~0.40% (in 1800 C.E.) to ~0.60% dry weight (in 2000 C.E.). Petrographic analysis confirmed the presence of fire-derived carbonaceous particles/BC at ~2% of total OC. Natural fires were the most likely cause of both elevated polycyclic aromatic hydrocarbon (PAH) concentrations and enhanced sorption in Oriole Lake sediments prior to 1850, consistent with their tree-ring-based fire history. In contrast to other PAHs, retene and perylene displayed decreasing concentrations during periods with natural fires, questioning their use as fire tracers. The occurrence of natural fires, however, did not result in elevated concentrations of black carbon or chars in the sediments. Only the 1912-2007 sediment layer contained anthropogenic particles, such as soot BC. In this layer, combining OC absorption with adsorption to soot BC (using a Freundlich coefficient n = 0.7) explained the observed sorption well. In the older layers, n needed to be 0.3 and 0.5 to explain the enhanced sorption to the sediments, indicating the importance of natural chars/inertinites in sorbing PAHs. For phenanthrene, values of n differed significantly between sorption to natural chars (0.1-0.4) and sorption to anthropogenic black carbon (>0.5), suggesting it could serve as an in situ probe of sorbents.  相似文献   

9.
Air deposition is a dominant transport mechanism for many hydrophobic organic pollutants (HOCs) to the Great Lakes. Our previous research has shown that soot exhibits large surface areas with high organic carbon contents suggesting the potential for strong HOC partitioning. As yet, however, clear data showing the link between HOCs such as PAHs to the deposition of soot into the Lakes (a proposed transport mechanism) is primarily inferential. We measured soot carbon (SC) and organic carbon (OC) in sediments collected from each of the Laurentian Great Lakes. OC and SC levels collected from locations near urban areas were higher than in sediments collected from distant locations. By far, Lake Superior had the lowest current SC flux of any lake, and Lakes Michigan and Erie had the highest. SC flux for all lakes had the following order: Superior < Huron < Ontario < Michigan < Erie, ranging 0.02-0.89 mg (m2 yr)(-1). Differences in lake size resulted in a different order for total SC loading by lake: Superior < Ontario < Huron < Erie < Michigan, ranging 2.3-420 x 10(3) tyr(-1). SC and PAH accumulation rates reported previously for Lake Michigan sediment were highly correlated; with a SC to PAH mass ratio of 10(4) (0.01%). The importance of soot as a potential sorbent for various classes of airborne HOCs was examined using a simple octanol-air partitioning model together with our previous characterization of soot particles. The results predict that both PAHs and PBDEs should have strong partitioning to soot and suggest the need to further investigate soot as a vector for PBDE transport.  相似文献   

10.
Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.  相似文献   

11.
Anthropogenic activities have increased the amount of mercury (Hg) transported atmospherically to the Arctic. At the same time, recent climate warming is altering the limnology of arctic lakes and ponds, including increases in aquatic primary production. It has been hypothesized that climate-driven increases in aquatic production have enhanced Hg scavenging from the water column, and that this mechanism may account for much of the recent rise in lake sediment Hg. Here, we test the relationship between climate, algal production, and sediment Hg using a well-dated and multiproxy lake sediment record spanning the Holocene from Lake CF3 (Baffin Island, Nunavut, Canada). During the early Holocene, peak (summer) insolation drove July air temperatures higher than present, and resulted in increased autochthonous primary production as recorded by total organic matter, spectrally inferred Chl-a, diatom abundance, and carbon stable isotopic signatures. However, there are no relationships between any of these proxies and sediment Hg concentrations during this interval. Given that the behavior of preindustrial Hg was relatively stable during past intervals of naturally mediated high production, we surmise that postindustrial increases in Hg accumulation within CF3 reflect a multiplicative effect of atmospheric deposition of anthropogenic Hg and increased sedimentation rates.  相似文献   

12.
Mass balance assessment for mercury in Lake Champlain   总被引:1,自引:0,他引:1  
A mass balance model for mercury in Lake Champlain was developed in an effort to understand the sources, inventories, concentrations, and effects of mercury (Hg) contamination in the lake ecosystem. To construct the mass balance model, air, water, and sediment were sampled as a part of this project and other research/monitoring projects in the Lake Champlain Basin. This project produced a STELLA-based computer model and quantitative apportionments of the principal input and output pathways of Hg for each of 13 segments in the lake. The model Hg concentrations in the lake were consistent with measured concentrations. Specifically, the modeling identified surface water inflows as the largest direct contributor of Hg into the lake. Direct wet deposition to the lake was the second largest source of Hg followed by direct dry deposition. Volatilization and sedimentation losses were identified as the two major removal mechanisms. This study significantly improves previous estimates of the relative importance of Hg input pathways and of wet and dry deposition fluxes of Hg into Lake Champlain. It also provides new estimates of volatilization fluxes across different lake segments and sedimentation loss in the lake.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous contaminant in urban environments. Although numerous sources of PAHs to urban runoff have been identified, their relative importance remains uncertain. We show that a previously unidentified source of urban PAHs, parking lot sealcoat, may dominate loading of PAHs to urban water bodies in the United States. Particles in runoff from parking lots with coal-tar emulsion sealcoat had mean concentrations of PAHs of 3500 mg/kg, 65 times higher than the mean concentration from unsealed asphalt and cement lots. Diagnostic ratios of individual PAHs indicating sources are similar for particles from coal-tar emulsion sealed lots and suspended sediment from four urban streams. Contaminant yields projected to the watershed scale for the four associated watersheds indicate that runoff from sealed parking lots could account for the majority of stream PAH loads.  相似文献   

14.
The geochemical behavior of Co in aquatic systems has often been related to the presence of Fe and Mn particles. A few studies have shown that Co is exclusively associated with particulate Mn, but the dynamics of Co and Mn cycling have never been determined in real time under natural conditions. In this study, we used a combination of analytical techniques to study the temporal and spatial evolution of Mn microparticles (MnOx) over 2 weeks in the water column of a shallow stratified lake (Paul Lake, MI). We report a temporal accumulation of dissolved Mn at the oxic-anoxic transition, and we show that this accumulation is due to the reductive dissolution of Mn particles. The reductant has not been identified, but abiotic reduction by sigmaH2S and ferrous iron is excluded because they are produced below the zone of MnOx reduction. Hybridization of RNA isolated from Paul Lake with oligonucleotide probes targeting the delta proteobacteria, which include metal-reducing species, suggests that their activity is greatest at and just below the oxic-anoxic transition, so that Mn reduction may be influenced by bacterial activity. Mn-oxidizing bacteria were isolated from this zone as well. We also demonstrate that the dynamic evolution of MnOx has a direct influence on the distribution of Co in the water column of this lake: dissolved Co is released during the reductive dissolution of MnOx and accumulates at the redox interface.  相似文献   

15.
Lake Malawi, an East African Rift Valley lake, is internationally renowned for having the highest diversity of fish species in the world, and these cichlids are highly specialized in their dietary habits. In this lake, tissue stable carbon (delta13C) and nitrogen (delta15N) isotopes can be used over several trophic levels to distinguish those consumers relying upon carbon fixed by either benthic or pelagic primary producers. As such, it was possible to contrast the biomagnification of persistent organochlorines through the benthic and pelagic food webs. In 1996 and 1997, food-web organisms were collected from Lake Malawi and analyzed for organochlorines, delta13C and delta15N to determine the factors that affectthe biomagnification of contaminants in a tropical lake. The pesticide DDT was the most predominant pollutant in the biota from Lake Malawi and was found at the highest concentrations in the largest and fattiest fish species. As observed in temperate systems, log-transformed sigmaDDT concentrations in food-web organisms were significantly predicted by delta15N or log lipid (r2 = 0.32 and 0.40, respectively). In addition, the slope of the regression of log sigmaDDT versus delta15N was significantly higher in the pelagic than the benthic food web. These results indicate that pelagic organisms are at greater risk of accumulating these pollutants than biota relying upon benthic primary production.  相似文献   

16.
Field studies were conducted to assess the coastal water quality impact of stormwater runoff from the Santa Ana River, which drains a large urban watershed located in southern California. Stormwater runoff from the river leads to very poor surf zone water quality, with fecal indicator bacteria concentrations exceeding California ocean bathing water standards by up to 500%. However, cross-shore currents (e.g., rip cells) dilute contaminated surf zone water with cleaner water from offshore, such that surf zone contamination is generally confined to < 5 km around the river outlet. Offshore of the surf zone, stormwater runoff ejected from the mouth of the river spreads out over a very large area, in some cases exceeding 100 km2 on the basis of satellite observations. Fecal indicator bacteria concentrations in these large stormwater plumes generally do not exceed California ocean bathing water standards, even in cases where offshore samples test positive for human pathogenic viruses (human adenoviruses and enteroviruses) and fecal indicator viruses (F+ coliphage). Multiple lines of evidence indicate that bacteria and viruses in the offshore stormwater plumes are either associated with relatively small particles (< 53 microm) or not particle-associated. Collectively, these results demonstrate that stormwater runoff from the Santa Ana River negatively impacts coastal water quality, both in the surf zone and offshore. However, the extent of this impact, and its human health significance, is influenced by numerous factors, including prevailing ocean currents, within-plume processing of particles and pathogens, and the timing, magnitude, and nature of runoff discharged from river outlets over the course of a storm.  相似文献   

17.
Riverine runoff is an important mode to transport anthropogenic pollutants from terrestrial sources to oceans. Polybrominated diphenyl ethers (PBDEs) were measured in riverine runoff samples from the eight major outlets within the Pearl River Delta (PRD), China, an economically fast developing region housing a vast number of electronics manufacturing and assembling plants. The sigma 17PBDEs (sum of 17 BDE congeners, i.e., BDE-28, -47, -66, -85, -99, -100, -138, -153, -154, -183, -196, -197, -203, -206, -207, -208, and -209) concentrations varied from 344 to 68,000 pg/L, with those of BDE-209, BDE-47, and BDE-99 being 335-65200, 3-143, and <1-200 pg/L, respectively. These levels were in the high end of the global PBDEs concentrations in the aquatic environments. The monthly inputs of sigma 17PBDEs ranged from 0.21 to 215 kg at individual outlets, and the annual input of sigma 17PBDEs from all the outlets was estimated at 2140 kg/year. Of the target BDE congeners, BDE-209 was the most predominant component with an annual input of 1960 kg/year, followed by BDE-47 (13.3 kg/year) and BDE-99 (11.7 kg/year). An extrapolation of the past use of PBDEs in the region concluded that 23 metric tons of sigma 17PBDEs have been discharged into the coastal ocean from the PRD in the last 20 years. The amount of PBDEs imported to China in the form of e-waste was estimated at 35000 metric tons/year, higher than the annual domestic production of brominated fire retardants (approximately 10000 metric tons/year) and the annual riverine input of total PBDEs from the PRD, suggesting that the majority of PBDEs inventory has been accumulated from importation of e-wastes. Because of the continuous importation of e-wastes and strong demand for brominated fire retardants, the impact of PBDEs on China's and the world's environments is expected to persist for many years to come.  相似文献   

18.
Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Studytogether with high-resolution over-water meteorological date provided by the National Oceanic and Atmospheric Administration (July, 1994-October, 1995). Atmospheric deposition was determined to be the primary pathway for mercury inputto Lake Michigan, contributing approximately 84% of the estimated 1403 kg total annual input (atmospheric deposition + tributary input). Wet (10.6 microg m(-2)) and dry deposition (9.7 microg m(-2)) contributed almost equally to the annual atmospheric Hg deposition of 20.3 microg m(-2) (1173 kg). Re-emission of dissolved gaseous Hg from the lake was also significant (7.8 microg m(-2)), reducing the net atmospheric deposition to 12.5 microg m(-2) (720 kg). A strong urban influence was observed in the over-water mercury deposition estimates in the southern portion of the lake. The Chicago/Gary urban area was estimated to contribute approximately 20% (127 kg) of the annual atmospheric mercury deposition to Lake Michigan. The magnitude of local anthropogenic mercury sources in the Chicago/Gary urban area suggests that emission reductions could significantly reduce atmospheric mercury deposition into Lake Michigan.  相似文献   

19.
Soot black carbon (here expressed as GBC) is present in sediments of Central Park and Prospect Park Lakes, New York City (NYC), and peaks in the middle of the 20th Century at the highest values (1-3% dry weight) ever reported in urban lakes. During that period (approximately 1940-1970), the GBC represents up to 28% of the total organic carbon (OC). Radionuclide-normalized whole core inventories of accumulated GBC are similar in the two lakes which are separated by approximately 15 km, suggesting that emissions of fine soot particles may have accumulated homogeneously over at least the urban center of NYC. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the sediments is decoupled from that of GBC. The highest levels of total PAHs correspond to peak coal use for space heating in NYC in the early 1900s. In contrast, GBC concentrations were highest in the mid 1900s, a period when oil combustion dominated local fossil fuel use and incineration of municipal solid waste (MSW) was common practice in NYC. Decreases in GBC levels observed in more recently deposited sediments are consistent with improvements in particle emissions control systems. Non-soot BC (char) was identified by a high carbon to nitrogen (C/N) ratio that persisted after correction for GBC. This likely tracer of MSW incineration was estimated to contribute an additional '35% of total organic carbon found in the sediments deposited during the peak period of combustion. The temporal trends of soot-BC observed in our lake cores do not agree with published historical reconstructions based on fuel consumption and estimated emission factors.  相似文献   

20.
The accident at Windscale in October 1957 resulted in the release to the atmosphere of a large quantity of radioactivity. The presented work is a retrospective search for evidence of contamination from the accident in the northeastern region of Ireland. A lake yielding a high-resolution sedimentary record was identified near the northeast coast of Ireland. This site was used to reconstruct the history of radionuclide input to the region, based on the analysis of a set of cores extracted from the lake. A chronology for sediment accumulation within the lake was established using radioisotopic dating techniques (including 270Pb). High-resolution gamma and alpha spectrometry techniques were used to quantify concentrations of 137Cs, 239,240Pu and 241Am, all of which were released during the accident. The primary radioactive component of the release was 131I (T1/2 = 8 days), but this short-lived isotope has long since decayed. However, 129I (T1/2 = 1.57 x 10(7) years) was also released during the accident, and in a known ratio to 131I. Recent advances in accelerator mass spectrometry now make it feasible to measure 129I at ultra-trace level and thereby retrospectively reconstruct 131I deposition. Clearly resolved concentration profiles for 137Cs, 239,240Pu and 241Am in the lake cores reflect known historical fallout trends. The data suggest that any contamination from the Windscale fire that might have reached this catchment has been overwritten by input from the testing of nuclear weapons in the atmosphere. A time-series for 129I in lake sediment shows that concentrations in recent sediments are approximately 10 times greater than concentrations recorded in strata corresponding to the period of maximum fallout of other radionuclides from atmospheric testing of nuclear weapons (1964). These recent increases in 129I are attributed to increased emissions from the nuclear industry. The study yields no evidence of any enhancement in radioisotope concentrations, over and above global fallout, in strata dated to 1957, and we conclude that contamination from the Windscale fire had negligible impact on the northeastern region of Ireland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号