首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this investigation the pulse-echo technique was validated as a method that could be used to monitor the complete polymerization of acrylic bone cement in a surgical theatre. Currently, orthopaedic surgeons have no objective method to quantify the state of cure of bone cement as it progresses through its polymerization cycle. Clear benefits of the pulse-echo technique are that it is easy to use, non-invasive, and non-destructive. Furthermore, the test results were found to be highly reproducible with minor deviations. Three proprietary cements were used to confirm the validity of the technique; CMW Endurance, Palacos R and Simplex P. The results showed that the acoustic properties of bone cement clearly demonstrated a relationship with the different stages of polymerization, and in particular with the transitions between the waiting, dough, and setting phases. Additionally, the cure time of the poly(methyl methacrylate) cements consistently correlated with the attainment of 75 per cent of the average maximum velocity of sound value. The measured cure times concurred with the ISO and ASTM standards. Moreover, measurements of the final sound velocity and broadband ultrasonic attenuation correlated strongly with the density and mechanical properties of the cured bone cement samples.  相似文献   

2.
In this work three iodine-containing monomers were proposed as new radiopaque agents for acrylic bone cements. In previous studies the addition of iodine-containing methacrylate monomers provided a statistically significant increase in tensile stress, fracture toughness and ductility, with respect to the barium sulphate (BaSO4)-containing cement. However, since fatigue resistance is one of the main properties required to ensure a good long-term performance of permanent prostheses, it is important to compare the fatigue properties of these new bone cement formulations with the radiolucent and BaSO4-containing bone cements. Because the acrylic cements have initial cracks, fatigue crack propagation studies were performed. It can be observed that these acrylic cements followed the Paris-Erdogan model. The results showed that the addition of some organic radiopacifiers (DISMA, TIBMA) increased the fatigue crack propagation resistance as compared to the radiolucent cement, being similar to the BaSO4-containing cement. The radiolucent cement showed a low crack propagation resistance.  相似文献   

3.
Residual stresses resulting from the shrinkage of polymethyl methacrylate (PMMA) bone cement have been implicated in the formation of cracks in cement mantles following total hip arthroplasty. This study investigates whether two such cements, with differentiated solidification characteristics (i.e. working and setting times), display significant differences in their residual stress characteristics in an experiment designed to replicate the physical conditions of total hip arthroplasty. Experiments were performed using a representative femoral construct to measure and compare the temperatures and residual strains developed for standard PMMA cement mantles (CMW 1 Gentamicin) and slow curing cement mantles (SmartSet HV Gentamicin) during and following polymerization. These experimental results revealed no statistically significant difference (t-test, p > 0.05) for peak exotherm temperature and residual strain levels between the cements (measured after 3 h). The tailored polymerization characteristics of the slow-curing cement do not significantly affect residual stress generation, compared with the standard cement. It is often considered that residual stresses significantly relax following polymerization and before biomechanical loads are first applied during rehabilitation (up to 3 days later). This was examined for durations of 18 h to 3 days. Axial strains in the model femur and stem reduced by averages of 5.5 and 7.9 per cent respectively, while hoop strains in the stem exhibited larger reductions. An axisymmetric transient thermoelastic finite element model of the experiment was developed, allowing residual stresses to be predicted based on differential scanning calorimetry (DSC) measurements of the heat released throughout the exothermic curing reaction. The model predictions closely replicated the experimental measurements of both temperature and residual strain at 3 h, suggesting that residual strains can be fully accounted for by the thermal contraction mechanism associated with cooling after solidification.  相似文献   

4.
Fracture characteristics of acrylic bone cement-bone composites   总被引:1,自引:0,他引:1  
In this study, the fracture properties of Perspex, acrylic bone cement prepared using a commercially available reduced pressure mixing system and a bone cement-bone composite were compared under different test conditions. The method used was the double-torsion (DT) test. The observations made from this investigation are as follows. The fracture toughness and critical crack length for Perspex significantly increased (ANOVA, p = 0.001) when tested in water compared to air. An increase in test temperature from 19 to 37 degrees C resulted in a decrease in the fracture properties in water, this reduction being also statistically significant (ANOVA, p = 0.02). The mean fracture toughness and standard deviation of CMW3 bone cement when mixed under reduced pressure was 2.19 +/- 0.11 MN m(-3/2) compared to 3.89 +/- 0.10 MN m(-3/2) for the cement-bone composite (ANOVA, p = 0.004). The crack length determined for CMW3 bone cement and the cement bone composite were 0.323 +/- 0.031 and 1.1434 +/- 0.61 mm respectively. The plateau loads of the composite material were higher than measured for the monolithic acrylic bone cement, 249.66 +/- 67.75 N compared with 140.83 +/- 6.82 N. The high level of variation recorded for the plateau loads of the bone cement bone composite is due to the orientation and volume fraction of the cancellous bone. It can be concluded from this investigation that acrylic bone cement interdigitation into the cancellous bone results in a superior material with respect to crack resistance in comparison with the bone cement as a lone entity. Therefore it is an advantage if there is sufficient cancellous bone stock available within the intermedullary canal to allow bone cement penetration to occur, for the transfer of loads during daily activity. Additionally, it is paramount that the clinician ensures that adequate pressure is applied and maintained for an appropriate time during cement injection and prosthesis insertion in order to ensure optimum cement penetration into the pore openings of the cancellous bone, thus improving the resistance of the cement mantle to fracture and ultimately improving the longevity of the joint replacement.  相似文献   

5.
Bacterial infection remains a significant complication following total joint replacement. If infection is suspected when revision surgery is being performed, a large dose of antibiotic, usually gentamicin sulphate, is often blended with the acrylic bone cement powder in an attempt to reduce the risk of recurrent infection. In this in-vitro study the effect of small and large doses of gentamicin sulphate on the handling and mechanical properties of the cement, gentamicin release from the cement, and in-vitro biofilm formation by clinical Staphylococcus spp. isolates on the cement was determined. An increase in gentamicin loading of 1, 2, 3, or 4 g, in a cement powder mass of 40 g, resulted in a significant decrease in the compressive and four-point bending strength, but a significant increase in the amount of gentamicin released over a 72h period. When overt infection was modelled, using Staphylococcus spp. clinical isolates at an inoculum of 1 x 10(7) colony-forming units/ml, an increase in the amount of gentamicin (1, 2, 3, or 4 g) added to 40 g of poly(methyl methacrylate) cement resulted in an initial decrease in bacterial colonization but this beneficial effect was no longer apparent by 72 h, with the bacterial strains forming biofilms on the cements despite the release of high levels of gentamicin. The findings suggest that orthopaedic surgeons should carefully consider the clinical consequences of blending large doses (1 g or more per 40 g of poly(methyl methacrylate)) of gentamicin into Palacos R bone cement for use in revision surgery as the increased gentamicin loading does not prevent bacterial biofilm formation and the effect on the mechanical properties could be important to the longevity of the prosthetic joint.  相似文献   

6.
V.K. Jain  S. Bahadur 《Wear》1982,75(2):357-368
The worn surfaces of three polymers sliding against a lapped steel disk were studied by scanning electron microscopy (SEM) and transmission electron microscopy. The surfaces of polymethylmethacrylate and high density polyethylene were covered with bands of arced ripples stretched along the transverse direction. The shape of these ripples is consistent with the distribution of tensile principal stress in the contact zone for a hemispherical indenter sliding on a plane surface. The Polyvinylchloride surface suffered severe plastic deformation during sliding as discerned by the dimples on it. The fatigue fracture surfaces of these materials were also examined by SEM. The polymethylmethacrylate surface exhibited a series of striations whose spacing increased in the direction of crack propagation. The striations on high density polyethylene and Polyvinylchloride surfaces were not observed because fracture was accompanied by considerable plastic deformation. This study shows that the mechanism of the separation of a wear particle from the sliding surface is cumulative damage as encountered in fatigue.  相似文献   

7.
Interfacial shear strength between poly(methyl methacrylate) (PMMA) bone cement and cancellous bone was measured in bone samples from human proximal femora. Samples were prepared with fresh cement-bone, fresh cement inside a mantle of existing cement and with fresh cement-revised bone surfaces. Push-out tests to measure shear strength caused failure only at bone-cement interfaces; revised bone interfaces were 30 per cent weaker (P < 0.02) than primary interfaces. The clinical relevance is that revision of cemented joint arthroplasties may necessitate removal of components with sound cement-bone fixation. The practice of removing all traces of PMMA cement may not yield the optimal fixation; adhesion of fresh cement to freshly prepared surfaces of the existing cement might also be considered where circumstances are favourable.  相似文献   

8.
New bone cements that include several additives are currently being investigated and tested. One such additive is sodium fluoride (NaF), which promotes bone formation, facilitating implant integration and success. The influence of NaF on the fatigue performance of the cement as used in biomedical applications was tested in this paper. In fact fatigue failure of the cement mantle is a major factor limiting the longevity of a cemented implant. An experimental bone cement with added NaF (12 wt%) was investigated. The fatigue strength of the novel bone cement was evaluated in comparison with the cement without additives; fatigue tests were conducted according to current standards. The load levels were arranged based on a validated, statistically based optimization algorithm. The curve of stress against number of load cycles and the endurance limit were obtained and compared for both formulations. The results showed that the addition of NaF (12 wt%) to polymethylmethacrylate (PMMA) bone cement does not affect the fatigue resistance of the material. Sodium fluoride can safely be added to the bone cement without altering the fatigue performance of the PMMA bone cement.  相似文献   

9.
在LZ50钢车轴上制取了光滑试样和环形缺口试样,按照AAR M-101-2009新标准测试了其旋转弯曲疲劳性能,并观察了断口形貌。结果表明:光滑试样的旋转弯曲疲劳裂纹萌生于试样表面,而环形缺口试样的裂纹萌生于缺口前缘,并呈多源开裂形式,两种试样均形成与轴向垂直的平断口;当车轴的拉伸强度提高5%后,其光滑试样旋转弯曲疲劳性能也得到明显提高,环形缺口试样虽中值疲劳强度比光滑试样的降低18%,但其旋转弯曲疲劳极限缺口敏感系数仍与国外碳素钢车轴保持在同一水平上。  相似文献   

10.
通过化学成分、显微组织和裂纹、断口特征的分析以及应力强度校核,对一台输送水泥用斗式提升机输送链销轴的断裂原因进行了综合分析。分析结果显示:失效销轴表面的最大弯曲应力偏大,并且在淬火期间失效销轴会产生微裂纹,在交变应力载荷作用下,销轴表面发生疲劳损伤并最终发生疲劳断裂。建议严格遵照热处理工艺条件操作,避免产生淬火裂纹;通过改造销轴结构或减小工作载荷,降低表面的最大弯曲应力。  相似文献   

11.
In recent years there has been a shift from traditional methods of investigating dental materials to a fracture mechanics approach. Fracture toughness (KIC) is an intrinsic material property which can be considered to be a measure of a material's resistance to crack propagation. Glass-ionomer cements are biocompatible and bioactive dental restorative materials, but they suffer from poor fracture toughness and are extremely susceptible to dehydration. The main objective of this study was to evaluate the fracture toughness of three types of commercially available dental cements (polyacid-modified composite resin, resin-modified and conventional glass ionomer) using a short-rod chevron-notch test and to investigate and interpret the results by means of fractography using scanning electron microscopy. Ten specimens of each cement were fabricated according to manufacturers' instructions, coated in varnish, and stored at ambient laboratory humidity, 100 per cent relative humidity, or in water at 37 degrees C for 7 days prior to preparation for testing. Results indicated that significant differences existed between each group of materials and that the fracture toughness ranged from 0.27 to 0.72 MN/m3/2. It was concluded that the resin-modified glass-ionomer cement demonstrated the highest resistance to crack propagation. Fractographs clearly showed areas of stable and unstable crack growth along the fractured surfaces for the three materials examined.  相似文献   

12.
A procedure and criterion for bone cement fracture toughness tests   总被引:1,自引:0,他引:1  
Nowadays, two procedures, based on the recommendation of two American standards (ASTM E399 and ASTM D5045), are used to determine the fracture toughness, KIc, of bone cement. However, there is a lack of knowledge about the equivalence of the two testing methods applied to bone cement. Additionally, in spite of the recommendation of several authors to introduce a rejection criterion for specimens based on the size of defects found in the fracture surface, no data are available about the effect of porosity within the material on the KIc of bone cement. The aims of this study were to verify whether the KIc values calculated for bone cement using the two procedures are comparable and whether macroporosity within the tested samples affects the KIc value of bone cement, and, if so, to establish a rejection criterion for specimen selection. Samples of pure polymethyl methacrylate (PMMA) were tested by both procedures. Additionally, samples showing defects (macroporosity) of different sizes and located in different positions within the specimen were tested. The KIc value determined following the ASTM E399 procedure was 13 per cent lower than that calculated following the ASTM D5045 procedure. In the first series a lower data scatter was observed. Also, the presence of macroporosity on the fracture surface of the specimen affected the KIc value of bone cement. Therefore, the mechanical behaviour of samples was affected by defects within the material. Since it is possible to mould specimens without macroporosity, it seems recommendable to reject specimens with macroporosity on the fracture surface before calculating the KIc value of bone cement.  相似文献   

13.
This paper describes tests that were carried out to model the stress relaxation behaviour of polymethylmethacrylate (PMMA) bone cement. Stress relaxation of bone cement is believed to be a significant factor in the mechanism of load transfer in the femoral stem of a polished, collarless taper-fit replacement hip joints. It is therefore important that this condition and its implications are understood. Stress relaxation was carried out on PMMA samples of varying age in four-point bending configuration. It was shown that the samples stiffened with age and that the amount of stress relaxation reduced as the samples aged. The experimental results of the stress relaxation were accurately modelled on the double exponential of the Maxwell model so that long-term predictions of the stress condition could be made from short-term mechanical tests.  相似文献   

14.
Finite element analysis of nanostructures with roughness and scratches   总被引:3,自引:0,他引:3  
Bhushan B  Agrawal GB 《Ultramicroscopy》2003,97(1-4):495-507
Finite element analysis facilitates optimal design of MEMS/NEMS devices for reliability. A finite element method (FEM) was developed to analyze the effect of types of surface roughness and scratches on stresses of nanostructures. Beams with surface roughness in the form of semicircular and grooved asperities in varying numbers in the longitudinal direction were considered. In the transverse direction semicircular asperities and scratches in varying numbers and with different pitch were modeled. Furthermore semicircular asperities were truncated both in longitudinal and transverse direction and analyzed. It was observed that the asperities and scratches increase the bending tensile stresses which could lead to failure of MEMS/NEMS devices. The beam material was assumed to be purely elastic, elastic-plastic and elastic-perfectly plastic to observe the variations in the bending stresses and displacements for both smooth nanobeam and nanobeam with defined roughness. The results of the analysis can be useful to designers to develop the most suitable geometry for nanostructures.  相似文献   

15.
A titanium alloy hip prosthesis was inserted in a Tufnol tube representing the upper part of the femur. The prosthesis was cemented in the model femur using PMMA bone cement. Five thermocouples were embedded in the bone cement and the assembly was subjected to cyclic loading with a range of 0.3-4.5 kN at a frequency of 6 Hz. Temperature measurements over a 48 hour period indicated that the temperature rise in the bone cement was less than 4 degrees C. It is concluded that such tests can be carried out at 6 Hz without significantly affecting the mechanical properties of PMMA bone cement.  相似文献   

16.
The low‐shrink Silorane‐based composite could bond effectively to bone and showed the potential be used as a bone cement. Bone organ culture maintains the anatomical order, natural cell‐to‐cell and cell‐to‐matrix relationship. The purpose of this study was to evaluate the responses of bone cells to a Silorane‐based composite which was compared with a representative polymethyl methacrylate (PMMA) bone cement. The critical size defects were created through the parietal bones from one litter of mice. The paired bones were divided into two groups: Silorane‐based composite group and PMMA group. The prepared two groups of disks were put into the defects. The cultures were grown in vitro for 38 days and analyzed with microcomputed‐tomography, dissecting‐microscope, phase‐ contrast‐microscope, scanning‐electron‐microscopy, and energy‐ dispersive‐X‐ray. At the 10th day, the Silorane disk was almost fully covered by a sheet of cells but the cells hardly attached to the disk surface. The edge of the PMMA disk was covered by a sheet of cells and the migrated individual cells attached to the whole surface of the disk. At the 38th day, some cells attached to the exposed disk area of the Silorane disk while the formed tissues covered the whole surface of the PMMA disk. The collagen fibers, globular deposits and bone formation were visible in both groups. The Silorane‐based composite showed promise as a potential bone cement when compared with PMMA which is used in clinical orthopedics. However, the cell attachment to PMMA was evidently better than to Silorane‐based composite. Microsc. Res. Tech. 75:1176–1184, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Barium sulphate is added to polymethylmethacrylate (PMMA) bone cement as a radiopacifier. Gentamicin is an antibiotic added to bone cement to treat or prevent infection in arthroplasty. This study investigated the combined effect of barium sulphate and gentamicin sulphate on the fatigue strength of PMMA bone cement. Three different formulations were studied: pure PMMA, PMMA with barium sulphate added and PMMA with barium sulphate and gentamicin sulphate added. Before testing all specimens were stored in water at 37 degrees C for at least 15 days to season the PMMA and to elute the antibiotic. Fatigue tests were performed following a previously validated procedure. The slope part of the W?hler diagram was obtained and a rough endurance limit was estimated for all three formulations. The experimental data showed that the addition of barium sulphate to PMMA bone cement affected the fatigue strength of the material, whereas addition of gentamicin sulphate to the radiopaque PMMA had no effect on the fatigue properties of the bone cement. While PMMA with barium sulphate added was confirmed to have a reduced fatigue strength when compared with plain PMMA, no detrimental effect was found for the addition of gentamicin sulphate to radiopaque PMMA.  相似文献   

18.
The corrosion of a wire rope reduces its life expectancy. In this study, repeated bending tests were conducted using a bending fatigue tester by changing the tensile load and corrosion time of wire ropes, which were the same type as those used in elevators. The number of broken wires was studied, and a tensile test was conducted for cases in which the fracture was severe. The effect of corrosion fatigue on life expectancy was considered by comparing fracture strength values and observing fracture surfaces. The results indicate that an increase in accumulated corrosion fatigue, a greater tensile load, and repeated bending cycles may yield a rapid decrease in fracture strength and an increase in the number of broken wires. Therefore, it is concluded that corrosion fatigue is an important factor that decreases the life expectancy of wire rope.  相似文献   

19.
Radiopacifying agents are commonly added to bone cements to enhance the visibility of the cement in radiography. The radiopacifiers usually employed may, however, have undesired effects on the mechanical properties of the cement. A potentially new radiopacifier is tantalum, which in the present work was evaluated in terms of radiopacity. Bone cements containing different percentages of tantalum were compared with plain bone cement as well as with formulations containing different percentages of the commonly used radiopacifier barium sulphate. The radiopacity was assessed quantitatively and qualitatively, by measuring with a digital densitometer the optical density of the cement on X-ray films, and consulting the expertise of ten orthopaedic surgeons. It was found that tantalum does present radiopacity, but not as high as barium sulphate under the specific conditions applied to this study.  相似文献   

20.
After total hip replacement, some cemented titanium stems show above-average early loosening rates. Increased release of wear particles and resulting reaction of the peri-prosthetic tissue were considered responsible. The objective was to develop a test method for analysing the abrasive wear behaviour of cemented stems and for generating wear particles at the interface with the bone cement. By means of the novel test device, cemented hip stems with different designs, surface topographies and material compositions using various bone cements could be investigated. Before testing, the cemented stems were disconnected from the cement mantle to simulate the situation of stem loosening (debonding). Subsequently, constant radial contact pressures were applied on to the stem surface by a force-controlled hydraulic cylinder. Oscillating micromotions of the stem (+/- 250 microm; 3 x 10(6)cycles; 5 Hz) were carried out at the cement interface initiating the wear process. The usability of the method was demonstrated by testing geometrically identical Ti-6A1-7Nb and Co-28Cr-6Mo hip stems (n= 12) with definite rough and smooth surfaces, combined with commercially available bone cement containing zirconium oxide particles. Under identical frictional conditions with the rough shot-blasted stems, clearly more wear particles were generated than with the smooth stems, whereas the material composition of the hip stems had less impact on the wear behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号