首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diagnostic phenotype of nonalcoholic fatty liver disease (NAFLD)—in particular, the most significant form in terms of prognosis, nonalcoholic steatohepatitis (NASH)—continues to rely on liver tissue evaluation, in spite of remarkable advances in non-invasive algorithms developed from serum-based tests and imaging-based or sonographically-based tests for fibrosis or liver stiffness. The most common tissue evaluation remains percutaneous liver biopsy; considerations given to the needle size and the location of the biopsy have the potential to yield the most representative tissue for evaluation. The pathologist’s efforts are directed to not only global diagnosis, but also assessment of severity of injury. Just as in other forms of chronic liver disease, these assessments can be divided into necroinflammatory activity, and fibrosis with parenchymal remodeling, in order to separately analyze potentially reversible (grade) and non-reversible (stage) lesions. These concepts formed the bases for current methods of evaluating the lesions that collectively comprise the phenotypic spectra of NAFLD. Four extant methods have specific applications; there are pros and cons to each, and this forms the basis of the review.  相似文献   

2.
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of diseases ranging from simple fatty liver to nonalcoholic steatohepatitis, (NASH) which may progress to cirrhosis and hepatocellular carcinoma. NASH has been independently correlated with atherosclerosis progression and cardiovascular risk. NASH development is characterized by intricate interactions between resident and recruited cells that enable liver damage progression. The increasing general agreement is that the cross-talk between hepatocytes, hepatic stellate cells (HSCs) and macrophages in NAFLD has a main role in the derangement of lipid homeostasis, insulin resistance, danger recognition, immune tolerance response and fibrogenesis. Moreover, several evidences have suggested that hepatic stem/progenitor cell (HPCs) activation is a component of the adaptive response of the liver to oxidative stress in NAFLD. HPC activation determines the appearance of a ductular reaction. In NASH, ductular reaction is independently correlated with progressive portal fibrosis raising the possibility of a periportal fibrogenetic pathway for fibrogenesis that is parallel to the deposition of subsinusoidal collagen in zone 3 by HSCs. Recent evidences indicated that adipokines, a class of circulating factors, have a key role in the cross-talk among HSCs, HPCs and liver macrophages. This review will be focused on cellular cross-talk and the relative molecular networks which are at the base of NASH progression and fibrosis.  相似文献   

3.
The association between nonalcoholic fatty liver disease (NAFLD) and chronic kidney disease has attracted interest and attention over recent years. However, no data are available in children. We determined whether children with NAFLD show signs of renal functional alterations, as determined by estimated glomerular filtration rate (eGFR) and urinary albumin excretion. We studied 596 children with overweight/obesity, 268 with NAFLD (hepatic fat fraction ≥5% on magnetic resonance imaging) and 328 without NAFLD, and 130 healthy normal-weight controls. Decreased GFR was defined as eGFR < 90 mL/min/1.73 m2. Abnormal albuminuria was defined as urinary excretion of ≥30 mg/24 h of albumin. A greater prevalence of eGFR < 90 mL/min/1.73 m2 was observed in patients with NAFLD compared to those without liver involvement and healthy subjects (17.5% vs. 6.7% vs. 0.77%; p < 0.0001). The proportion of children with abnormal albuminuria was also higher in the NAFLD group compared to those without NAFLD, and controls (9.3% vs. 4.0% vs. 0; p < 0.0001). Multivariate logistic regression analysis revealed that NAFLD was associated with decreased eGFR and/or microalbuminuria (odds ratio, 2.54 (confidence interval, 1.16–5.57); p < 0.05) independently of anthropometric and clinical variables. Children with NAFLD are at risk for early renal dysfunction. Recognition of this abnormality in the young may help to prevent the ongoing development of the disease.  相似文献   

4.
Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.  相似文献   

5.
Chronic intermittent hypoxia, a characteristic of obstructive sleep apnea (OSA), is associated with the progression of simple hepatic steatosis to necroinflammatory hepatitis. We determined whether inhibition of a hypoxia-induced signaling pathway could attenuate hypoxia-exacerbated lipoapoptosis in human hepatocytes. The human hepatocellular carcinoma cell line (HepG2) was used in this study. Palmitic acid (PA)-treated groups were used for two environmental conditions: Hypoxia (1% O2) and normoxia (20% O2). Following the treatment, the cell viability was determined by the 3,4-(5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay, and the mechanism of lipoapoptosis was evaluated by Western blotting. Hypoxia exacerbated the suppression of hepatocyte growth induced by palmitic acid via activation of mitochondrial apoptotic pathways as a result of endoplasmic reticulum (ER) and oxidative stresses. Ammonium pyrrolidine dithiocarbamate, a scavenger of reactive oxygen species, attenuated the hypoxia-exacerbated lipoapoptosis in hepatocytes, whereas glycerol, which reduces ER stress, did not. This may have been because inhibition of oxidative stress decreases the expression of pro-apoptotic proteins, such as caspase 9 and cytochrome c. These results suggested that modulation of apoptotic signaling pathways activated by oxidative stress can aid in identifying novel therapeutic strategies for the treatment of nonalcoholic steatohepatitis (NASH) with OSA. Further in vivo studies are necessary to understand the pathophysiologic mechanism of NASH with OSA and to prove the therapeutic effect of the modulation of the signaling pathways.  相似文献   

6.
为了探究邻苯二甲酸单丁酯(MBP)对小鼠肝脏和肾脏的氧化损伤,将42只BALB/c小鼠随机分为7组,每组6只,分别为25mg·kg-1、50mg·kg-1、100mg·kg-1、200mg·kg-1的4个MBP染毒组、1个100mg·kg-1的邻苯二甲酸二丁酯(DBP)染毒组、1个空白对照组、1个溶剂对照组。染毒期间对小鼠的体征进行观察;14d后取其肝脏和肾脏组织,制作小鼠肝脏和肾脏组织的切片,对肝脏和肾脏的组织学形态进行观察;制作组织匀浆液用于检测肝脏和肾脏组织细胞的ROS、GSH、MDA的含量,以了解MBP对肝脏和肾脏组织的氧化损伤作用。结果显示:各剂量组小鼠肝细胞和肾小管上皮细胞均出现不同程度的细胞核固缩、细胞水肿、空泡样变、脂肪滴增大融合等症状;ROS和MDA的含量与MBP的染毒剂量呈正相关,GSH的含量与MBP的染毒剂量呈负相关;相同剂量的DBP与MBP染毒组相比,MBP染毒组的ROS和MDA含量较高、GSH含量较低。表明,MBP的暴露与小鼠肝脏和肾脏组织的氧化损伤存在直接联系。  相似文献   

7.
Multiple parallel hits, including genetic differences, insulin resistance and intestinal microbiota, account for the progression of non-alcoholic steatohepatitis (NASH). Multiple hits induce adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level that subsequently induce hepatic steatosis, inflammation and fibrosis, among which oxidative stress is considered a key contributor to progression from simple fatty liver to NASH. Although several clinical trials have shown that anti-oxidative therapy can effectively control hepatitis activities in the short term, the long-term effect remains obscure. Several trials of long-term anti-oxidant protocols aimed at treating cerebrovascular diseases or cancer development have failed to produce a benefit. This might be explained by the non-selective anti-oxidative properties of these drugs. Molecular hydrogen is an effective antioxidant that reduces only cytotoxic reactive oxygen species (ROS) and several diseases associated with oxidative stress are sensitive to hydrogen. The progress of NASH to hepatocellular carcinoma can be controlled using hydrogen-rich water. Thus, targeting mitochondrial oxidative stress might be a good candidate for NASH treatment. Long term clinical intervention is needed to control this complex lifestyle-related disease.  相似文献   

8.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Several lines of evidence have indicated a pathogenic role of insulin resistance, and a strong association with type 2 diabetes (T2MD) and metabolic syndrome. Importantly, NAFLD appears to enhance the risk for T2MD, as well as worsen glycemic control and cardiovascular disease in diabetic patients. In turn, T2MD may promote NAFLD progression. The opportunity to take into account NAFLD in T2MD prevention and care has stimulated several clinical studies in which antidiabetic drugs, such as metformin, thiazolidinediones, GLP-1 analogues and DPP-4 inhibitors have been evaluated in NAFLD patients. In this review, we provide an overview of preclinical and clinical evidences on the possible efficacy of antidiabetic drugs in NAFLD treatment. Overall, available data suggest that metformin has beneficial effects on body weight reduction and metabolic parameters, with uncertain effects on liver histology, while pioglitazone may improve liver histology. Few data, mostly preclinical, are available on DPP4 inhibitors and GLP-1 analogues. The heterogeneity of these studies and the small number of patients do not allow for firm conclusions about treatment guidelines, and further randomized, controlled studies are needed.  相似文献   

9.
Oxidative stress plays a critical role in the etiology and pathogenesis of neurodegenerative disorders, and the molecular mechanisms that control the neuron response to ROS have been extensively studied. However, the oxidative stress-effect on miRNA expression in hippocampal neurons has not been investigated, and little is known on the effect of ROS-modulated miRNAs on cell function. In this study, H2O2 was used to stimulate the mouse primary hippocampal neurons to develop an oxidative stress cell model. The alterations of miRNAs expression were detected by microarray analysis and five miRNAs were validated by real-time RT-PCR. The bioinformatic analysis of deregulated miRNAs was performed to determine their potential roles in the pathogenesis of neurological disorders. We found that H2O2 mediated a total of 101 deregulated miRNAs, which mainly took part in the regulation of the MAPK pathway. Among them, miR-135b and miR-708 were up-regulated significantly and their targets were predicted to be involved in DNA recombination, protein ubiquitination, protein autophosphorylation and development of neurons. These results demonstrated that oxidative stress alters the miRNA expression profile of hippocampal neurons, and the deregulated miRNAs might play a potential role in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease (AD).  相似文献   

10.
The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.  相似文献   

11.
Oxidative damage is considered to be the primary cause of several aging associated disease pathologies. Cumulative oxidative damage tends to be pervasive among cellular macromolecules, impacting proteins, lipids, RNA and DNA of cells. At a systemic level, events subsequent to oxidative damage induce an inflammatory response to sites of oxidative damage, often contributing to additional oxidative stress. At a cellular level, oxidative damage to mitochondria results in acidification of the cytoplasm and release of cytochrome c, causing apoptosis. This review summarizes findings in the literature on oxidative stress and consequent damage on cells and tissues of the cardiovascular system and the central nervous system, with a focus on aging-related diseases that have well-documented evidence of oxidative damage in initiation and/or progression of the disease. The current understanding of the cellular mechanisms with a focus on macromolecular damage, impacted cellular pathways and gross morphological changes associated with oxidative damage is also reviewed. Additionally, the impact of calorific restriction with its profound impact on cardiovascular and neuronal aging is addressed.  相似文献   

12.
Chlamydia pneumoniae, a pathogenic bacteria responsible for respiratory tract infections, is known as the most implicated infectious agent in atherosclerotic cardiovascular diseases (CVDs). Accumulating evidence suggests that C. pneumoniae-induced oxidative stress may play a critical role in the pathogenesis of CVDs. Indeed, the overproduction of reactive oxygen species (ROS) within macrophages, endothelial cells, platelets and vascular smooth muscle cells (VSMCs) after C. pneumoniae exposure, has been shown to cause low density lipoprotein oxidation, foam cell formation, endothelial dysfunction, platelet adhesion and aggregation, and VSMC proliferation and migration, all responsible for the typical pathological changes of atherosclerotic plaque. The aim of this review is to improve our insight into C. pneumoniae-induced oxidative stress in order to suggest potential strategies for CVD prevention. Several antioxidants, acting on multi-enzymatic targets related to ROS production induced by C. pneumoniae, have been discussed. A future strategy for the prevention of C. pneumoniae-associated CVDs will be to target chlamydial HSP60, involved in oxidative stress.  相似文献   

13.
Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development.  相似文献   

14.
Vascular calcification, especially medial artery calcification, is associated with cardiovascular death in patients with diabetes mellitus and chronic kidney disease (CKD). To determine the underlying mechanism of vascular calcification, we have demonstrated in our previous report that advanced glycation end-products (AGEs) stimulated calcium deposition in vascular smooth muscle cells (VSMCs) through excessive oxidative stress and phenotypic transition into osteoblastic cells. Since AGEs can induce apoptosis, in this study we investigated its role on VSMC apoptosis, focusing mainly on the underlying mechanisms. A rat VSMC line (A7r5) was cultured, and treated with glycolaldehyde-derived AGE-bovine serum albumin (AGE3-BSA). Apoptotic cells were identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. To quantify apoptosis, an enzyme-linked immunosorbent assay (ELISA) for histone-complexed DNA fragments was employed. Real-time PCR was performed to determine the mRNA levels. Treatment of A7r5 cells with AGE3-BSA from 100 µg/mL concentration markedly increased apoptosis, which was suppressed by Nox inhibitors. AGE3-BSA significantly increased the mRNA expression of NAD(P)H oxidase components including Nox4 and p22phox, and these findings were confirmed by protein levels using immunofluorescence. Dihydroethidisum assay showed that compared with cBSA, AGE3-BSA increased reactive oxygen species level in A7r5 cells. Furthermore, AGE3-induced apoptosis was significantly inhibited by siRNA-mediated knockdown of Nox4 or p22phox. Double knockdown of Nox4 and p22phox showed a similar inhibitory effect on apoptosis as single gene silencing. Thus, our results demonstrated that NAD(P)H oxidase-derived oxidative stress are involved in AGEs-induced apoptosis of VSMCs. These findings might be important to understand the pathogenesis of vascular calcification in diabetes and CKD.  相似文献   

15.
Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.  相似文献   

16.
In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients.  相似文献   

17.
Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hypertensive drugs have shown protective effects against mitochondrial-dependent oxidative stress. Notably, few mitochondrial proteins can be considered therapeutic targets on their own. In fact, antioxidant therapies specifically targeted at mitochondria represent promising strategies to reduce mitochondrial dysfunction and related hypertensive TOD. In the present article, we discuss the role of mitochondrial oxidative stress as a contributing factor to hypertensive TOD development. We also provide an overview of mitochondria-based treatment strategies that may reveal useful to prevent TOD and reduce its progression.  相似文献   

18.
The high prevalence of diabetes mellitus and its increasing incidence worldwide, coupled with several complications observed in its carriers, have become a public health issue of great relevance. Chronic hyperglycemia is the main feature of such a disease, being considered the responsible for the establishment of micro and macrovascular complications observed in diabetes. Several efforts have been directed in order to better comprehend the pathophysiological mechanisms involved in the course of this endocrine disease. Recently, numerous authors have suggested that excess generation of highly reactive oxygen and nitrogen species is a key component in the development of complications invoked by hyperglycemia. Overproduction and/or insufficient removal of these reactive species result in vascular dysfunction, damage to cellular proteins, membrane lipids and nucleic acids, leading different research groups to search for biomarkers which would be capable of a proper and accurate measurement of the oxidative stress (OS) in diabetic patients, especially in the presence of chronic complications. In the face of this scenario, the present review briefly addresses the role of hyperglycemia in OS, considering basic mechanisms and their effects in diabetes mellitus, describes some of the more commonly used biomarkers of oxidative/nitrosative damage and includes selected examples of studies which evaluated OS biomarkers in patients with diabetes, pointing to the relevance of such biological components in general oxidative stress status of diabetes mellitus carriers.  相似文献   

19.
Due to its localization and function, the cornea is regularly exposed to sunlight and atmospheric oxygen, mainly dioxygen, which produce reactive oxygen species (ROS). Therefore, corneal cells are particularly susceptible to oxidative stress. The accumulation of ROS in the cornea may affect signal transduction, proliferation and may also promote cell death. The cornea has several enzymatic and non-enzymatic antioxidants involved in ROS scavenging, but in certain conditions they may not cope with oxidative stress, leading to diseases of the eye. Keratoconus (KC) and Fuchs endothelial corneal dystrophy (FECD) are multifactorial diseases of the cornea, in which pathogenesis is not fully understood. However, increased levels of oxidative stress markers detected in these disorders indicate that oxidative stress may play an important role in their development and progression. These markers are: (i) decreased levels of non-enzymatic antioxidants, and (ii) decreased expression of genes encoding antioxidative enzymes, including thioredoxin reductase, peroxiredoxins, superoxide dismutase, glutathione S-transferase, and aldehyde dehydrogenase. Moreover, the FECD endothelium displays higher levels of oxidative DNA damage, especially in mitochondrial DNA (mtDNA), whereas KC cornea shows abnormal levels of some components of oxidative phosphorylation encoded by mtDNA. In this review we present some considerations and results of experiments supporting the thesis on the important role of oxidative stress in KC and FECD pathology.  相似文献   

20.
Influences of promoter concentration (or Sm/Mg ratio), precursor for MgO (viz. Mg-acetate, Mg-carbonate and Mg-hydroxide), calcination temperature of Sm-promoted MgO catalyst on the catalytic activity/selectivity in the oxidative coupling of methane (OCM) at different temperatures (650–850°C) and CH4/O2 ratios in feed (2·0–8·0) at a high space velocity (51600 cm3 g−1 h−1) have been investigated. The catalytic activity/selectivity of Sm–MgO catalysts in the OCM are found to be strongly influenced by the Sm/Mg ratio, precursor used for MgO and catalyst calcination temperature. The catalyst with Sm/Mg ratio of 0·11, prepared using magnesium acetate and magnesium carbonate as a source of MgO and calcining at 950°C, is found to be highly active and selective in the OCM process. A drastic reduction in catalytic activity/selectivity is observed when the catalyst is supported on low surface area porous catalyst carriers, indicating strong catalyst–support interactions. ©1997 SCI  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号