首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human mesenchymal stem cells (MSCs) have the potential to differentiate into nucleus pulposus (NP)-like cells under specific stimulatory conditions. Thus far, the effects of bone morphogenetic protein 3 (BMP3) and the cocktail effects of BMP3 and transforming growth factor (TGF)-β on MSC proliferation and differentiation remain obscure. Therefore, this study was designed to clarify these unknowns. MSCs were cultured with various gradients of BMP3 and BMP3/TGF-β, and compared with cultures in basal and TGF-β media. Cell proliferation, glycosaminoglycan (GAG) content, gene expression, and signaling proteins were measured to assess the effects of BMP3 and BMP3/TGF-β on MSCs. Cell number and GAG content increased upon the addition of BMP3 in a dose-dependent manner. The expression of COL2A1, ACAN, SOX9, and KRT19 increased following induction with BMP3 and TGF-β, in contrast to that of COL1A1, ALP, OPN, and COMP. Smad3 phosphorylation was upregulated by BMP3 and TGF-β, but BMP3 did not affect the phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 or c-Jun N-terminal kinase (JNK). Our results reveal that BMP3 enhances MSC proliferation and differentiation into NP-like cells, as indicated by increased cell numbers and specific gene expressions, and may also cooperate with TGF-β induced positive effects. These actions are likely related to the activation of TGF-β signaling pathway.  相似文献   

2.
Epithelial-to-mesenchymal transition (EMT) recapitulates metastasis and can be induced in vitro through transforming growth factor (TGF)-β signaling. A role for MMP activity in glioblastoma multiforme has been ascribed to EMT, but the molecular crosstalk between TGF-β signaling and membrane type 1 MMP (MT1-MMP) remains poorly understood. Here, the expression of common EMT biomarkers, induced through TGF-β and the MT1-MMP inducer concanavalin A (ConA), was explored using RNA-seq analysis and differential gene arrays in human U87 glioblastoma cells. TGF-β triggered SNAIL and fibronectin expressions in 2D-adherent and 3D-spheroid U87 glioblastoma cell models. Those inductions were antagonized by the TGF-β receptor kinase inhibitor galunisertib, the JAK/STAT inhibitors AG490 and tofacitinib, and by the diet-derived epigallocatechin gallate (EGCG). Transient gene silencing of MT1-MMP prevented the induction of SNAIL by ConA and abrogated TGF-β-induced cell chemotaxis. Moreover, ConA induced STAT3 and Src phosphorylation, suggesting these pathways to be involved in the MT1-MMP-mediated signaling axis that led to SNAIL induction. Our findings highlight a new signaling axis linking MT1-MMP to TGF-β-mediated EMT-like induction in glioblastoma cells, the process of which can be prevented by the diet-derived EGCG.  相似文献   

3.
We previously demonstrated that the non-calcemic pregnacalciferol (pD) analog 17,20S (OH)2pD suppressed TGF-β1-induced type I collagen production in cultured normal human dermal fibroblasts. In the present studies, we examined fibroblasts cultured from the lesional skin of patients with systemic sclerosis (scleroderma (SSc)) and assessed the effects of 17,20S(OH)2pD on fibrosis-related mediators. Dermal fibroblast lines were established from skin biopsies from patients with SSc and healthy controls. Fibroblasts were cultured with either 17,20S(OH)2pD or 1,25(OH)2D3 (positive control) with/without TGF-β1 stimulation and extracted for protein and/or mRNA for collagen synthesis and mediators of fibrosis (MMP-1, TIMP-1, PAI-1, BMP-7, PGES, GLI1, and GLI2). 1 7,20S(OH)2pD (similar to 1,25(OH)2D3) significantly suppressed net total collagen production in TGF-β1-stimulated normal donor fibroblast cultures and in cultures of SSc dermal fibroblasts. 17,20S(OH)2pD (similar to 1,25(OH)2D3) also increased MMP-1, BMP-7, and PGES and decreased TIMP-1 and PAI1 expression in SSc fibroblasts. Although 17,20S(OH)2pD had no effect on Gli1 or Gli2 in SSc fibroblasts, it increased Gli2 expression when cultured with TGF-β1 in normal fibroblasts. These studies demonstrated that 17,20S(OH)2pD modulates mediators of fibrosis to favor the reduction of fibrosis and may offer new noncalcemic secosteroidal therapeutic approaches for treating SSc and fibrosis.  相似文献   

4.
Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) have been studied several years for their immunomodulatory effect through the paracrine mechanism and cytokine secretion. In combination with endothelial progenitor cells (EPCs), MSCs have great therapeutical potential for the repair of endothelium and wound healing. However, little is known about the cytokine profile of rabbit AT-MSCs or even EPCs. The aim of this study was to analyze the secretomes of these rabbit stem/progenitor cells. A large-scale human cytokine array (up to 80 cytokines) was used to identify and compare cytokines secreted into conditioned media of human and rabbit AT-MSCs as well as HUVECs and rabbit EPCs. Few cytokines were highly expressed by human AT-MSCs (TIMP-2, TIMP-1), HUVECs (MCP-1, TIMP-2, GRO, Angiogenin, IL-8, TIMP-1), or by rabbit EPCs (TIMP-2). Several cytokines have moderate expression by human (MCP-1, GRO, Angiogenin, TGF-β 2, IL-8, LIF, IL-6, Osteopontin, Osteoprotegerin) and rabbit AT-MSCs (TIMP-2, TGF-β 2, LIF, Osteopontin, IL-8, IL-5, IL-3) or by HUVECs (IL-6, MIF, TGF-β 2, GCP-2, IGFBP-2, Osteoprotegerin, EGF, LIF, PDGF-BB, MCP-3, Osteopontin, Leptin, IL-5, ENA-78, TNF-β) and rabbit EPCs (TGF-β 2, Osteopontin, GRO, LIF, IL-8, IL-5, IL-3). In conclusion, the proposed method seems to be useful for the secretome analysis of rabbit stem/progenitor cells.  相似文献   

5.
Several transmembrane mucins have demonstrated that they contribute intracellularly to induce fibrotic processes. The extracellular domain of MUC16 is considered as a biomarker for disease progression and death in IPF patients. However, there is no evidence regarding the signalling capabilities of MUC16 that contribute to IPF development. Here, we demonstrate that MUC16 was overexpressed in the lung tissue of IPF patients (n = 20) compared with healthy subjects (n = 17) and localised in fibroblasts and hyperplastic alveolar type II cells. Repression of MUC16 expression by siRNA-MUC16 transfection inhibited the TGF-β1-induced fibrotic processes such as mesenchymal/ myofibroblast transformations of alveolar type II A549 cells and lung fibroblasts, as well as fibroblast proliferation. SiRNA-MUC16 transfection also decreased the TGF-β1-induced SMAD3 phosphorylation, thus inhibiting the Smad Binding Element activation. Immunoprecipitation assays and confocal immunofluorescence showed the formation of a protein complex between MUC16/p-SMAD3 in the cell membrane after TGF-β1 stimulation. This study shows that MUC16 is overexpressed in IPF and collaborates with the TGF-β1 canonical pathway to induce fibrotic processes. Therefore, direct or indirect targeting of MUC16 could be a potential drug target for human IPF.  相似文献   

6.
Transforming growth factor-β1 (TGF-β1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-β1. Bovine aortic endothelial cells in a culture system were treated with TGF-β1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-β1, induction of RSS-producing enzymes by TGF-β1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-β1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine β-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-β1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-β1, may modulate the regulation activity in vascular endothelial cells.  相似文献   

7.
Gingiva-Derived Mesenchymal Stromal Cells (GMSCs) have been shown to play an important role in periodontitis. However, how P. gingivalis, one of the key etiological agents of the disease, affects healthy (H)- and periodontitis (P)-GMSCs is unknown. To address this problem, we established 10 H-GMSC and 12 P-GMSC lines. No significant differences in morphology, differentiation into chondroblasts and adipocytes, expression of characteristic MSCS markers, including pericyte antigens NG2 and PDGFR, were observed between H- and P-GMSC lines. However, proliferation, cell size and osteogenic potential were higher in P-GMSCs, in contrast to their lower ability to suppress mononuclear cell proliferation. P. gingivalis up-regulated the mRNA expression of IL-6, IL-8, MCP-1, GRO-α, RANTES, TLR-2, HIF-1α, OPG, MMP-3, SDF-1, HGF and IP-10 in P-GMSCs, whereas only IL-6, MCP-1 and GRO-α were up-regulated in H-GMSCs. The expression of MCP-1, RANTES, IP-10 and HGF was significantly higher in P-GMSCs compared to H-GMSCs, but IDO1 was lower. No significant changes in the expression of TLR-3, TLR-4, TGF-β, LAP, IGFBP4 and TIMP-1 were observed in both types of GMSCs. In conclusion, our results suggest that P-GMSCs retain their pro-inflammatory properties in culture, exhibit lower immunosuppressive potential than their healthy counterparts, and impaired regeneration-associated gene induction in culture. All these functions are potentiated significantly by P. gingivalis treatment.  相似文献   

8.
Increasing extracellular osmolarity 100 mOsm/kg above plasma level to the physiological levels for cartilage induces chondrogenic marker expression and the differentiation of chondroprogenitor cells. The calcineurin inhibitor FK506 has been reported to modulate the hypertrophic differentiation of primary chondrocytes under such conditions, but the molecular mechanism has remained unclear. We aimed at clarifying its role. Chondrocyte cell lines and primary cells were cultured under plasma osmolarity and chondrocyte-specific in situ osmolarity (+100 mOsm, physosmolarity) was increased to compare the activation of nuclear factor of activated T-cells 5 (NFAT5). The effects of osmolarity and FK506 on calcineurin activity, cell proliferation, extracellular matrix quality, and BMP- and TGF-β signaling were analyzed using biochemical, gene, and protein expression, as well as reporter and bio-assays. NFAT5 translocation was similar in chondrocyte cell lines and primary cells. High supraphysiological osmolarity compromised cell proliferation, while physosmolarity or FK506 did not, but in combination increased proteoglycan and collagen expression in chondrocytes in vitro and in situ. The expression of the TGF-β-inducible protein TGFBI, as well as chondrogenic (SOX9, Col2) and terminal differentiation markers (e.g., Col10) were affected by osmolarity. Particularly, the expression of minor collagens (e.g., Col9, Col11) was affected. The inhibition of the FK506-binding protein suggests modulation at the TGF-β receptor level, rather than calcineurin-mediated signaling, as a cause. Physiological osmolarity promotes terminal chondrogenic differentiation of progenitor cells through the sensitization of the TGF-β superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-β superfamily signaling, FK506 further enhances signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our results help explain earlier findings and potentially benefit future cell-based cartilage repair strategies.  相似文献   

9.
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects’ eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.  相似文献   

10.
GEP-NETs are heterogeneous tumors originating from the pancreas (panNET) or the intestinal tract. Only a few patients with NETs are amenable to curative tumor resection, and for most patients, only palliative treatments to successfully control the disease or manage symptoms remain, such as with synthetic somatostatin (SST) analogs (SSAs), such as octreotide (OCT) or lanreotide (LAN). However, even cells expressing low levels of SST receptors (SSTRs) may exhibit significant responses to OCT, which suggests the possibility that SSAs signal through alternative mechanisms, e.g., transforming growth factor (TGF)-β. This signaling mode has been demonstrated in the established panNET line BON but not yet in other permanent (i.e., QGP) or primary (i.e., NT-3) panNET-derived cells. Here, we performed qPCR, immunoblot analyses, and cell counting assays to assess the effects of SST, OCT, LAN, and TGF-β1 on neuroendocrine marker expression and cell proliferation in NT-3, QGP, and BON cells. SST and SSAs were found to regulate a set of neuroendocrine genes in all three cell lines, with the effects of SST, mainly LAN, often differing from those of OCT. However, unlike NT-3 cells, BON cells failed to respond to OCT with growth arrest but paradoxically exhibited a growth-stimulatory effect after treatment with LAN. As previously shown for BON, NT-3 cells responded to TGF-β1 treatment with induction of expression of SST and SSTR2/5. Of note, the ability of NT-3 cells to respond to TGF-β1 with upregulation of the established TGF-β target gene SERPINE1 depended on cellular adherence to a collagen-coated matrix. Moreover, when applied to NT-3 cells for an extended period, i.e., 14 days, TGF-β1 induced growth suppression as shown earlier for BON cells. Finally, next-generation sequencing-based identification of microRNAs (miRNAs) in BON and NT-3 revealed that SST and OCT impact positively or negatively on the regulation of specific miRNAs. Our results suggest that primary panNET cells, such as NT-3, respond similarly as BON cells to SST, SSA, and TGF-β treatment and thus provide circumstantial evidence that crosstalk of SST and TGF-β signaling is not confined to BON cells but is a general feature of panNETs.  相似文献   

11.
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulators have led to dramatic improvements in lung function in many people with cystic fibrosis (PwCF). However, the efficacy of CFTR modulators may be hindered by persistent airway inflammation. The cytokine transforming growth factor-beta1 (TGF-β1) is associated with worse pulmonary disease in PwCF and can diminish modulator efficacy. Thus, strategies to augment the CFTR response to modulators in an inflammatory environment are needed. Here, we tested whether the CFTR amplifier nesolicaftor (or PTI-428) could rescue the effects of TGF-β1 on CFTR function and ciliary beating in primary human CF bronchial epithelial (CFBE) cells. CFBE cells homozygous for F508del were treated with the combination of elexacaftor/tezacaftor/ivacaftor (ETI) and TGF-β1 in the presence and absence of nesolicaftor. Nesolicaftor augmented the F508del CFTR response to ETI and reversed TGF-β1-induced reductions in CFTR conductance by increasing the expression of CFTR mRNA. Nesolicaftor further rescued the reduced ciliary beating and increased expression of the cytokines IL-6 and IL-8 caused by TGF-β1. Finally, nesolicaftor augmented the F508del CFTR response to ETI in CFBE cells overexpressing miR-145, a negative regulator of CFTR expression. Thus, CFTR amplifiers, but only when used with highly effective modulators, may provide benefit in an inflamed environment.  相似文献   

12.
During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-β) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-βs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-β2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-β1, TGF-β2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-β1, and TGF-β2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-β and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-β and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.  相似文献   

13.
Tissue remodeling contributes to ongoing inflammation and refractoriness of chronic rhinosinusitis (CRS). During this process, epithelial-mesenchymal transition (EMT) plays an important role in dysregulated remodeling and both microRNA (miR)-29b and heat shock protein 47 (HSP47) may be engaged in the pathophysiology of CRS. This study aimed to determine the role of miR-29b and HSP47 in modulating transforming growth factor (TGF)-β1-induced EMT and migration in airway epithelial cells. Expression levels of miR-29b, HSP47, E-cadherin, α-smooth muscle actin (α-SMA), vimentin and fibronectin were assessed through real-time PCR, Western blotting, and immunofluorescence staining. Small interfering RNA (siRNA) targeted against miR-29b and HSP47 were transfected to regulate the expression of EMT-related markers. Cell migration was evaluated with wound scratch and transwell migration assay. miR-29b mimic significantly inhibited the expression of HSP47 and TGF-β1-induced EMT-related markers in A549 cells. However, the miR-29b inhibitor more greatly induced the expression of them. HSP47 knockout suppressed TGF-β1-induced EMT marker levels. Functional studies indicated that TGF-β1-induced EMT was regulated by miR-29b and HSP47 in A549 cells. These findings were further verified in primary nasal epithelial cells. miR-29b modulated TGF-β1-induced EMT-related markers and migration via HSP47 expression modulation in A549 and primary nasal epithelial cells. These results suggested the importance of miR-29b and HSP47 in pathologic tissue remodeling progression in CRS.  相似文献   

14.
15.
The debilitating effects of lower back pain are a major health issue worldwide. A variety of factors contribute to this, and oftentimes intervertebral disk degeneration (IDD) is an underlying cause of this disorder. Inflammation contributes to IDD, and inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, play key roles in the pathology of IDD. Therefore, the development of treatments that inhibit the expression and/or effects of TNF-α and IL-1β in IDD patients should be a promising therapeutic approach to consider. This study characterized the potential to suppress inflammatory cytokine production in degenerative intervertebral disc (NP) cells by treatment with IL-10 and TGF-β in a canine model of IDD. IDD was induced surgically in six male beagles, and degenerative NP cells were isolated and cultured for in vitro studies on cytokine production. Cultured degenerative NP cells were divided into four experimental treatment groups: untreated control, IL-10-treated, TGF-β-treated, and IL-10- plus TGF-β-treated cells. Cultured normal NP cells served as a control group. TNF-α expression was evaluated by fluorescence activated cell sorting (FACS) analysis and enzyme-linked immunosorbent assay (ELISA); moreover, ELISA and real-time PCR were also performed to evaluate the effect of IL-10 and TGF-β on NP cell cytokine expression in vitro. Our results demonstrated that IL-10 and TGF-β treatment suppressed the expression of IL-1β and TNF-α and inhibited the development of inflammatory responses. These data suggest that IL-10 and TGF-β should be evaluated as therapeutic approaches for the treatment of lower back pain mediated by IDD.  相似文献   

16.
SMAD4, a key regulator of transforming growth factor-β (TGF-β) signaling, plays a major role in cell growth, migration, and apoptosis. In particular, TGF-β/SMAD induces growth arrest, and SMAD4 induces the expression of target genes such as p21WAF1 and p15INK4b through its interaction with several cofactors. Thus, inactivating mutations or the homozygous deletion of SMAD4 could be related to tumorigenesis or malignancy progression. However, in some cancer types, SMAD4 is neither mutated nor deleted. In the current study, we demonstrate that TGF-β signaling with a preserved SMAD4 function can contribute to cancer through associations with negative pathway regulators. We found that nuclear respiratory factor-1 (NRF1) is a novel interaction SMAD4 partner that inhibits TGF-β/SMAD4-induced p15INK4b mRNA expression by binding to SMAD4. Furthermore, we confirmed that NRF1 directly binds to the core region of the SMAD4 promoter, thereby decreasing SMAD4 mRNA expression. On the whole, our data suggest that NRF1 is a negative regulator of SMAD4 and can interfere with TGF-β/SMAD-induced tumor suppression. Our findings provide a novel perception into the molecular basis of TGF-β/SMAD4-signaling suppression in tumorigenesis.  相似文献   

17.
Inflammation and transforming growth factor-β1 (TGF-β1) contribute to the development of peritoneal fibrosis (PF), which is associated with peritoneal dialysis (PD). Astragalus membranaceus (Astragalus) has anti-inflammatory and anti-fibrotic effects in many diseases. The goal of this study was to determine the anti-fibrotic effects of Astragalus on the PF response to PD. A rat model of PD was induced using standard PD fluid, and PF was verified by HE and Masson’s staining, as well as through the expression of fibroblast surface protein (FSP) and collagen III. The expression levels of monocyte chemoattractant protein (MCP)-1, F4/80 (macrophage/monocyte marker in rat), TGF-β1 and the downstream proteins phospho-SMAD 2/3 in dialyzed peritoneal tissue treated with or without Astragalus was evaluated using immunohistochemistry analysis. Overall correlations between MCP-1 and TGF-β1 staining were analyzed using both the Spearman and Pearson methods. The results showed that Astragalus could inhibit the recruitment and activation of monocytes/macrophages, thereby reducing the production of TGF-β1 in the dialyzed peritoneal membrane. PF was also significantly decreased following treatment with Astragalus. MCP-1 expression had a strong positive correlation with TGF-β1 sensitivity, suggesting that the anti-fibrotic function of Astragalus was mediated by MCP-1 and the TGF-β1 pathway. Our results indicate that Astragalus could be a useful agent against PD-induced PF.  相似文献   

18.
The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.  相似文献   

19.
Anastomotic leakage (AL) is a devastating complication after colorectal surgery, possibly due to the loss of stabilizing collagen fibers in the submucosa. Our aim was to assess the formation of collagen in the colon versus the rectum with or without transforming growth factor (TGF)-β1 exposure in a human cellular model of colorectal repair. Primary fibroblasts were isolated by an explant procedure from clinically resected tissue rings during anastomosis construction in 19 consecutive colorectal patients who underwent laparoscopy. The cells, identified as fibroblasts by morphologic characteristics and flow cytometry analysis (CD90+), were cultured for 8 days and in 12 patients in the presence of 1 ng/mL TGF-β1. Total collagen deposition was measured colorimetrically after Sirius red staining of fixed cell layers, and type I, III, and VI collagen biosynthesis and degradation were specifically determined by the biomarkers PINP, PRO-C3, PRO-C6, and C3M in conditioned media by competitive enzyme-linked immunosorbent assays. Total collagen deposition by fibroblasts from the colon and rectum did not significantly differ. TGF-β1 treatment increased PINP, PRO-C6, and total collagen deposition. Mechanistically, TGF-β1 treatment increased COL1A1 and ACTA2 (encoding α-smooth muscle actin), and decreased COL6A1 and MMP2 mRNA levels in colorectal fibroblasts. In conclusion, we found no effect of anatomic localization on collagen production by fibroblasts derived from the large intestine. TGF-β1 represents a potential therapeutic agent for the prevention of AL by increasing type I collagen synthesis and collagen deposition.  相似文献   

20.
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号