首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three-dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of thermal radiation, the change of physical parameters of arc plasma and the nonlinear characteristic of ferromagnetic material. The distributions of pressure, temperature, gas flow and current density of arc plasma in the arc region are calculated. The simulation results show some phenomena which discourage arc interruption, such as back commutation and arc burning at the back of the splitter plate. To verify the simulation model, the arc motion is studied experimentally. The influences of the material and position of the innermost barrier plate are analyzed mainly. It proved that the model developed in this paper can efficiently simulate the arc motion. The results indicate that the insulation barrier plate close to the top of the splitter plate is conducive to the arc splitting, which leads to the signi?cant increase of the arc voltage, so it is better for arc interruption. The research can provide methods and references to the optimization of ACB design.  相似文献   

2.
This paper focuses on the simulation of the low-voltage arc with an opening contact. A controllable experiment setup with a rotating contact is designed to investigate the arc behaviour. Supported by the experiment, the phenomena of arc elongation and commutation in the case of rotating contact are simulated with the dynamic grid technique introduced. Under the given condition of the external magnetic field and the contact rotating velocity, the stagnation and rapid jump of two arc roots are observed by the calculated and experimental arc root displacement. The voltage of arc column can be divided into four phases and its sharp rising progress comes from the increase of the displacement difference between two arc roots in x direction.  相似文献   

3.
A low voltage circuit breaker(LVCB) is an important piece of protection equipment which will switch off the fault current in a power system. The moving contact of a low voltage circuit breaker with a higher rated current consists of two parallel contacts. Therefore, the convection effect on the air arc evolution process in a two parallel contact system is analyzed. A threedimensional(3 D) magneto–hydro–dynamic(MHD) model of arc simulation is built. In this model, the anode consists of two parallel contacts and a bonding conductor. A nonlinear voltage–current density characteristic is employed to represent the near-anode and near-cathode voltage. The current density, arc voltage and currents through every contact are obtained. The influence of convection and conduction on the arc evolution process are quantitatively calculated. The displacements of the arc roots are obtained and the asymmetry of the arc root motion is analyzed. The arc evolution process of a two parallel contact system is preliminarily revealed.  相似文献   

4.
A central solenoid model coil will be set up to develop and verify the technique for the full-size central solenoid coil of the China Fusion Engineering Test Reactor. In case of quench and failures of superconducting coils, the quench protection(QP) system, which employs fuse-based commutation technology, is designed. This paper presents an analytical model to investigate the commutation process in the QP circuit. The model consists of the QP circuit equations, the breaker arc model, the fuse pre-arc model, and the fuse arc model. The model is employed in the whole commutation process including current transfer from breaker branch to the fuse branch model, then from fuse branch to the discharge resistor branch, and current decrease to zero in the discharge resistor. The experiment result verified the effectiveness of the presented model. The model might be helpful for design of the fuse and optimization of the commutation circuit.  相似文献   

5.
Evaporation erosion of the contacts is one of the fundamental failure mechanisms for relays.In this paper,the evaporation erosion characteristics are investigated for the copper contact pair breaking a resistive direct current (dc) 30 V/10 A circuit in the air.Molten pool simulation of thc contacts is coupled with the gas dynamics to cMculate the evaporation rate.A simplified arc model is constructed to obtain the contact voltage and current variations with time for the prediction of the current density and the heat flux distributions flowing from the arc into the contacts.The evaporation rate and mass variations with time during the breaking process are presented.Experiments are carried out to verify the simulation results.  相似文献   

6.
The effect of arc plasma on electrode erosion in a liquid metal current limiter(LMCL)is studied.Based on a simplified two-dimensional magnetohydrodynamic model,the elongated GaInSn metal vapor arc and its contraction process in a liquid metal current limiter are simulated.The distributions of temperature,pressure and velocity of the arc plasma are calculated.The simulation results indicate that the electrode erosion is mainly caused by two high temperature gas jet flows arising from the pressure gradient,which is a result of the non-uniform arc temperature distribution.The gas flows,which act as jets onto the electrode surface,lead to the evaporation of the electrode material form the surface.A redesign structure of the electrode is proposed and implemented according to the analysis,which greatly increased the service life of the electrode.  相似文献   

7.
In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.  相似文献   

8.
The preliminary design of an arc chamber in the 550 kV SF_6 circuit breaker was proposed in accordance with the technical requirements and design experience.The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement.Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage,the second optimal design was completed and its correctness was certificated by a breaking test.Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate.  相似文献   

9.
Arc motion and splitting of vacuum arc at intermediate frequency(400-800 Hz) were investigated under transverse magnetic field(TMF).The experiment was performed on cup-type TMF contacts with contact diameter of 40 mm and a contact gap of 4 mm in a single-frequency circuit.With high-speed photography we characterized the arc appearance at different arc currents from 3.3 kA-rms to 10 kA-rms at intermediate frequencies.As arc current increases from3.3 kA-rms to 10 kA-rms the arc appearance changes obviously.When current value is 3.3 kArms(current frequency 400-800 Hz),there is almost no splitting arc;when the current exceeds5 kA-rms(current frequency 400-800 Hz),the arc rotates at a speed above 20 m/s,accompanied by an observable splitting arc.The splitting arc could be observed at different frequencies and the arc-voltage had no noises when splitting occurred.The motion direction and the velocity of arc column were studied.Finally,the formation of a split arc was discussed.  相似文献   

10.
A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc move¬ment model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The rotation of the arc driven by an external electromagnetic force is simulated in the case with 200 kA of the short circuit current and 16 ms of arc duration. The arc rotating process and the speed of arc rotation have been obtained in the simulation. A comparison of the pressure in the expansion volume with and without an external magnetic field has been carried out based on the calculation results of two cases. The results of the simulation reveal that the arc rotation, which causes more energy exchange between the arc and its surrounding gas, can evidently bring about the pressurization in the expansion volume, which would contribute to more effective arc quenching at current zero and further reducing operation power.  相似文献   

11.
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit.We characterized the arc plasma jet flow appearance at different currents by using high-speed photography,and two polished contacts were used to search for the relationship between roughness and plasma jet flow.Then,to make the nature of arc plasma jet flow phenomena clear,a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated.The simulated DC arc plasma was presented with the temperature distribution and the current density distribution.Furthermore,the calculated arc flow vclocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress.The combined action of volume force and contact surface was the main reason of the arc jet flow.  相似文献   

12.
The liquid metal current limiter (LMCL) is regarded as a viable solution for reducing the fault current in a power grid. But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall, and reducing the erosion of the LMCL are challenging, not only theoretically, but also practically. In this work, a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity. Specifically, a novel fault current limiter (FCL) topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor. Further, the liquid metal self-pinch effect is modeled mathematically in three dimensions, and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation. The simulation results indicate that with the increase of current, the time for the liquid metal-free surface to begin depressing is reduced, and the position of the depression also changes. Different kinds of bubbles formed by the depressions gradually extend, squeeze, and break. With the increase of current, the liquid metal takes less time to break, but breaks still occur at the edge of the channel, forming arc plasma. Finally, relevant experiments are conducted for the novel FCL topology. The arcing process and current transfer process are analyzed in particular. Comparisons of the peak arc voltage, arcing time, current limiting efficiency, and electrode erosion are presented. The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5 times and the arcing time is reduced by more than 12%. The erosions of the liquid metal and electrodes are reduced. Moreover, the current limiting efficiency of the novel FCL topology is improved by 1%‒5%. This work lays a foundation for the topology and optimal design of the LMCL.  相似文献   

13.
The current interruption capability of a gas,when used in high voltage gas-blast circuit breakers,depends not only on its material properties but also the flow field since turbulence plays a dominant role in arc cooling during the interruption process.Based on available experimental results,a study of CO2 switching arcs under a DC (direct current) current in the model circuit breaker has been conducted to calibrate CO2 arc model and to analyse its electric and thermal property.Through detailed analysis of the results mechanisms responsible for the temperature distribution are identified and the domain energy transportation process of different region discussed.The present work provides significant coefficients for CO2 switching arc simulation and gives a better understanding of CO2 arc burning mechanisms.  相似文献   

14.
Recently DC relay has been concerned as a key component in DC power distribution,management and control systems like aircraft,new energy vehicle,IT and communication industries.Ordinarily,magnetic force and contact moving speed have great influence on arc behaviours in the breaking process.This paper focuses on the numerical investigation of arc during the contact opening process in a real 400V/20 A DC relay product coupling with an inductive load circuit.A 3D air arc model based on the magneto-hydrodynamic theory was built and calculated.A method coupling different computational software was used to take the nonlinear permanent magnet and contact opening process into consideration simultaneously.Arc behaviours under different magnetic field and contact opening speed were presented and discussed carefully.It has been found that the increase of the magnetic field is beneficial to the quick build-up of arc length and voltage.Arc breaking duration becomes shorter with the increase in contact opening speed from 63.5 rad s^-1 to 94.5 rad s^-1,such reduction is less significant with an increase of opening speed from 94.5 rad s^-l to 118.5 rad s^-1.  相似文献   

15.
As the main source of the vacuum arc plasma, cathode spots (CSs) play an important role on the behaviors of the vacuum arc. Their characteristics are affected by many factors, especially by the magnetic field. In this paper, the characteristics of the plasma jet from a single CS in vacuum arc under external axial magnetic field (AMF) are studied. A multi-species magneto-hydro-dynamic (MHD) model is established to describe the vacuum arc. The anode temperature is calculated by the anode activity model based on the energy flux obtained from the MHD model. The simulation results indicate that the external AMF has a significant effect on the characteristic of the plasma jet. When the external AMF is high enough, a bright spot appears on the anode surface. This is because with a higher AMF, the contraction of the diffused arc becomes more obvious, leading to a higher energy flux to the anode and thus a higher anode temperature. Then more secondary plasma can be generated near the anode, and the brightness of the ‘anode spot’ increases. During this process, the arc appearance gradually changes from a cone to a dumbbell shape. In this condition, the arc is in the diffuse mode. The appearance of the plasma jet calculated in the model is consistent with the experimental results.  相似文献   

16.
Based on magnetohydrodynamic (MHD) model of vacuum arc, the computer simulation of vacuum arc was carried out in this paper. In the MHD model, mass conservation equation, momentum conservation equations, energy conservation equations, generalized ohm‘s law and Maxwell equation were considered. MHD equations were calculated by numerical method, and the distribution of vacuum arc plasma parameters and current density were obtained. Simulation results showed that the magnetic constriction effect of vacuum arc is primarily caused by the Hall effect. In addition, the inhibition of axial magnetic field (AMF) on constriction of vacuum arc was calculated and analyzed.  相似文献   

17.
This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and solved by a modified commercial code. Firstly, this paper presents a solution of the stationary state of the arc plasma and discusses the distribution of some parameters throughout the chamber. Secondly, with the ferromagnetic materials included, the balance of the stationary state is broken and a transient course is calculated. In light of the simulation results, the temperature distribution sequence, the arc motion and the plasma jet are then described and analyzed in detail.  相似文献   

18.
In this paper, a three-dimensional non-equilibrium steady arc model is used to investigate the temperature, velocity and electromagnetic field in multi-cathode arc torch, and the formation mechanism of a large-area, uniform and diffused arc plasma is analyzed. The numerical simulation results show that a large volume plasma region can be formed in the central region of the generator during discharge. During this process, the maximum electron temperature appears near the cathode and in the central convergence region, while the maximum heavy particle temperature only appears in the central convergence region. This phenomenon is consistent with the experimental arc images. Near the cathode tip, the arc column is in a contraction state. In the area slightly away from the cathode, the six arc columns begin to join together. In the plasma generator, there is a large-scale current distribution in all directions of X, Y and Z, forming a stable arc plasma with a wide range of diffusion. The calculated electron temperature distribution is in good agreement with the measured electron temperature. The results suggest that the largearea diffused arc plasma in the multi-cathode arc torch is the combined effect of current distribution, convection heat transfer and heat conduction.  相似文献   

19.
A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc.Four parametric studies are performed:on the external axial magnetic field (AMF),on the cathode shape,on the total current and on the inlet gas velocity.The numerical results show that:the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF;a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis;the maximum values of plasma temperature increase with the total current;the plasma column in front of the cathode tip expands more severely in the axial direction,with a higher inlet speed;the cathode arc attachment shrinks towards the tip as the inlet speed increases.The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow.  相似文献   

20.
The self-excited DC air circuit breaker (SE-DCCB) has been widely used in urban rail transit due to its excellent stability. It can realize forward and reverse interruption, but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process, which is known as arc root stagnation. A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure. The magnetic field, temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A. The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation. The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement, which significantly increases the arc duration time of small current interruption. Based on the research, the structure of the magnetic conductance plate of the actual product is improved, which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted. The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号