共查询到20条相似文献,搜索用时 9 毫秒
1.
《等离子体科学和技术》2016,18(3):299-304
The behavior of fault arc in a high-speed switch(HSS) has been studied theoretically and experimentally.A simplified HSS setup is designed to support this work.A two-dimensional arc model is developed to analyze the characteristics of fault arc based on magnetic-hydrodynamic(MHD) theory.The advantage of such a model is that the thermal transfer coefficient can be determined by depending on the numerical method alone.The influence of net emission coefficients(NEC) radiation model and P1 model on fault arc is analyzed in detail.Results show that NEC model predicts more radiation energy and less pressure rise without the re-absorption effect considered.As a consequence,P1 model is more suitable to calculate the pressure rise caused by fault arc.Finally,the pressure rise during longer arcing time for different arc currents is predicted. 相似文献
2.
In this work, a magnetic fluid dynamics (MHD) model is used to simulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch under laminar and turbulent conditions. The electric current density, temperature and velocity distributions in the torch are obtained through the coupled iterative calculation about the electromagnetic equations described in a magnetic vector potential format and the modified fluid dynamics equations. The fluid-solid coupled calculation method is applied to guarantee the continuity of the electric current and heat transfer at the interface between the electrodes and fluid. The predicted location of the anodic arc root attachment and the arc voltage of the torch are consistent with corresponding experimental results. Through a specific analysis of the influence of mass flow rates and electric current on the torch outlet parameters, the total thermal efficiency, thermal loss of each part, and the laws of the variation of outlet parameters with the variation of mass flow rates and electric current was obtained. It is found that operation under a laminar condition with a limited area of the anode could increase the total thermal efficiency of the torch. 相似文献
3.
The themial transfer coefficient that represents the portion of energy heating the surrounding gas of fault arc is a key parameter in evaluating the pressure effects due to fault arcing in a closed electrical installation.This paper presents experimental research on the thermal transfer coefficient in a closed air vessel for Cu,Fe and A1 electrode materials over a currcni range from 1-20 kA with an electrode gap from 10-50 mm and gas pressure from 0.05-0.4 MPa.With a simplified energy balance including Joule heating,arc radiation,ihc energies related to electrode melting,vaporization and oxidation constructed,and the influences of different factors on thermal transfer coefficient are studied and evaluated.This quantitative estimation of the energy components confirmed that the pressure rise is closely related to the change in heat transport process of fault arc.particularly in consideration of the evaluation of Joule healing and radiation.Factors such as the electrode material,arc current,filling pressure and gap length between electrodes have a considerable effect on the thermal transfer coefficient and thus,the pressure rise due to the differences in the energy balance of fault arc. 相似文献
4.
Based on a two-dimensional axisymmetric magnetohydrodynamic (MHD) model, the vacuum arc characteristics under four kinds of axial magnetic fields (AMFs) are ana... 相似文献
5.
《等离子体科学和技术》2016,18(3):319-324
The preliminary design of an arc chamber in the 550 kV SF_6 circuit breaker was proposed in accordance with the technical requirements and design experience.The structural optimization was carried out according to the no-load flow field simulation results and verified by no-load pressure measurement.Based on load simulation results such as temperature field variation at the arc area and the tendency of post arc current under different recovery voltage,the second optimal design was completed and its correctness was certificated by a breaking test.Results demonstrate that the interrupting capacity of an arc chamber can be evaluated by the comparison of the gas medium recovery speed and post arc current growth rate. 相似文献
6.
Simulation Research of Magnetic Constriction Effect and Controlling by Axial Magnetic Field of Vacuum Arc 总被引:2,自引:0,他引:2
Based on magnetohydrodynamic (MHD) model of vacuum arc, the computer simulation of vacuum arc was carried out in this paper. In the MHD model, mass conservation equation, momentum conservation equations, energy conservation equations, generalized ohm‘s law and Maxwell equation were considered. MHD equations were calculated by numerical method, and the distribution of vacuum arc plasma parameters and current density were obtained. Simulation results showed that the magnetic constriction effect of vacuum arc is primarily caused by the Hall effect. In addition, the inhibition of axial magnetic field (AMF) on constriction of vacuum arc was calculated and analyzed. 相似文献
7.
Based on a two-dimensional axisymmetric magneto-hydrodynamic (MHD) model, low current vacuum arc (LCVA) characteristics are studied. The influence of cathode process under different axial magnetic fields and different anode radii on LCVA characteristics is also simulated. The results show that the influence of both cathode process and anode radii on LCVA is significant. The sign of anode sheath potentials can change from negative to positive with the decrease of anode radii. The simulation results are in part verified by experimental results. Especially, as the effect of ion kinetic energy is considered, ion temperature is improved significantly; which is in agreement with experimental results. 相似文献
8.
Simulation of the Effects of Several Factors on Arc Plasma Behavior in Low Voltage Circuit Breaker 总被引:2,自引:0,他引:2
Taking into account the properties of the arc plasma and the electromagnetic, heat and radiative phenomena, commercial computational fluid dynamics software PHOENICS has been adapted and modified to develop the three-dimensional magneto-hydrodynamic (MHD) model of arc in a low voltage circuit breaker. The effects of the arc ignition location, venting size and gassing material on arc behavior have been investigated. The analysis of the results show that the arc velocity accelerates with the increase in the distance between arc ignition location and of the venting size, and the existence of the gassing material is beneficial to improving the arc voltage and reducing the arc temperature. 相似文献
9.
中国原子能科学研究院正在设计研究的100MeV强流质子回旋加速器中真空室内的残余气体和磁场中的洛仑兹剥离将导致部分负氢离子束流损失,并在真空室内产生辐射剂量。本工作采用蒙特卡罗方法模拟计算该加速器运行时真空室外壁上沿圆周方向的辐射剂量分布,计算得出其最大值约为143Sv/h。同时,研究了在加速器停机后真空室内部的剩余辐射剂量场分布及其随时间的衰减规律。 相似文献
10.
Tomographic Analysis of Central MHD Activities and Radiation Losses on the HL-2A and LHD 总被引:1,自引:0,他引:1
Results of the two-dimensionally reconstructed distribution of soft X-ray emission in HL-2A and electromagnetic radiation in large helical device (LHD) are presented. Hardware improvements of in-vessel soft X-ray cameras and the development of tomographic software have made detailed and visual studies of soft X-ray emission possible in HL-2A. Several algorithms are employed in order to get as detail as possible in the images while keeping the guiding assumptions to a minimum. Recently success has been achieved in applying a 2D peeling away algorithm for tomographic reconstruction of LHD bolometric data jointly under the China-Japan collaboration. The data analysed so far have been used to study magnetohydrodynamic (MHD) instabilities on HL-2A tokamak and radiation losses on LHD. 相似文献
11.
A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6 circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The effect of PTFE (polytetrafluorethylene) vapor is considered in the mass, momentum and energy conservation equations of the constructed model. Then, the gas flow fields with and without conduction considered are simulated. By comparing the aforementioned two results, it is indicated that the arc's maximal temperature with conduction considered is 90 percent of that without considering conduction. 相似文献
12.
《等离子体科学和技术》2016,18(5):512-519
Evaporation erosion of the contacts is one of the fundamental failure mechanisms for relays.In this paper,the evaporation erosion characteristics are investigated for the copper contact pair breaking a resistive direct current (dc) 30 V/10 A circuit in the air.Molten pool simulation of thc contacts is coupled with the gas dynamics to cMculate the evaporation rate.A simplified arc model is constructed to obtain the contact voltage and current variations with time for the prediction of the current density and the heat flux distributions flowing from the arc into the contacts.The evaporation rate and mass variations with time during the breaking process are presented.Experiments are carried out to verify the simulation results. 相似文献
13.
The dynamic process of arc pressure and corresponding arc column expansion, which is the main feature after arc ignition and has a significant effect on the breaking behaviour of low -voltage circuit breakers, is studied. By constructing a three dimensional mathematical model of air arc plasma and adopting the Control Volume Method, the parameters of arc plasma including temperature and pressure are obtained. The variations of pressure field and temperature field with time are simulated. The result indicates that there are six stages for the process of arc column expansion according to the variation of pressure in arc chamber. In the first stage, the maximal pressure locates in the region close to cathode, and in the second stage the maximal pressure shifts to the region close to the anode. In the third stage, the pressure difference between the middle of arc column and the ambient gas is very large, so the arc column begins to expand apparently. In the fourth stage, the pressure wave propagates towards both ends and the maximal pressure appears at the two ends when the pressure wave reaches both sidewalls. In the fifth stage, the pressure wave is reflected and collides in the middle of the arc chamber. In the last stage, the propagation and reflection of pressure wave will repeat several times until a steady burning state is reached. In addition, the experimental results of arc column expansion, corresponding to the arc pressure variation, are presented to verify the simulation results. 相似文献
14.
《等离子体科学和技术》2016,18(3):287-291
A 3D Magnetohydrodynamics (MHD) arc model in conjunction with an arc move¬ment model is applied to simulate the arc rotation as well as to solve its effect on the pressure in an auto-expansion circuit breaker. The rotation of the arc driven by an external electromagnetic force is simulated in the case with 200 kA of the short circuit current and 16 ms of arc duration. The arc rotating process and the speed of arc rotation have been obtained in the simulation. A comparison of the pressure in the expansion volume with and without an external magnetic field has been carried out based on the calculation results of two cases. The results of the simulation reveal that the arc rotation, which causes more energy exchange between the arc and its surrounding gas, can evidently bring about the pressurization in the expansion volume, which would contribute to more effective arc quenching at current zero and further reducing operation power. 相似文献
15.
The effect of arc plasma on electrode erosion in a liquid metal current limiter(LMCL)is studied.Based on a simplified two-dimensional magnetohydrodynamic model,the elongated GaInSn metal vapor arc and its contraction process in a liquid metal current limiter are simulated.The distributions of temperature,pressure and velocity of the arc plasma are calculated.The simulation results indicate that the electrode erosion is mainly caused by two high temperature gas jet flows arising from the pressure gradient,which is a result of the non-uniform arc temperature distribution.The gas flows,which act as jets onto the electrode surface,lead to the evaporation of the electrode material form the surface.A redesign structure of the electrode is proposed and implemented according to the analysis,which greatly increased the service life of the electrode. 相似文献
16.
强流离子源是HL-2M装置5 MW中性束注入加热系统的核心部件,离子源通过弧电源加速初级电子至高能态,碰撞气体分子,产生等离子体。所以,弧电源对于离子源维持稳定的弧放电非常重要。本文利用Saber软件建立了弧电源的主电路模型,设计并仿真了弧电流的恒流控制、打坑控制以及超级电容的恒流充电控制、恒功率放电控制等。这种方法不仅提高了弧电源电路的分析和设计效率,缩短了系统研制的周期,还可用于实际系统的故障分析和控制参数的整定,降低实验风险。实验结果表明,弧电源的真实输出与仿真输出结果相符。 相似文献
17.
多层流模型(MFM)和故障树以不同的形式描述系统知识,在相同的系统边界条件和假设下,两者表达的系统可靠性逻辑是等效的。本文工作以此为基础,结合MFM的特点,提出了MFM转换为故障树的方法,为快速建立故障树提供了一种途径,实现了基于MFM的可靠性定性分析,并以压水堆核电厂的安全注入系统为例建立了系统的MFM,定性地分析了系统的可靠性。分析结果表明,MFM转换为故障树的逻辑是正确的,且MFM易于理解、建立和修改,相对于传统建故障树的方法,大幅减少了分析人员的工作量,节省了建模时间。 相似文献
18.
《等离子体科学和技术》2016,18(5):485-489
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit.We characterized the arc plasma jet flow appearance at different currents by using high-speed photography,and two polished contacts were used to search for the relationship between roughness and plasma jet flow.Then,to make the nature of arc plasma jet flow phenomena clear,a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated.The simulated DC arc plasma was presented with the temperature distribution and the current density distribution.Furthermore,the calculated arc flow vclocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress.The combined action of volume force and contact surface was the main reason of the arc jet flow. 相似文献
19.
A new method for the generation of high charged state metal ion beams is developed. This method is based on microwave heating of vacuum arc plasma in a magnetic... 相似文献
20.
《等离子体科学和技术》2020,22(4):45401
A low voltage circuit breaker(LVCB) is an important piece of protection equipment which will switch off the fault current in a power system. The moving contact of a low voltage circuit breaker with a higher rated current consists of two parallel contacts. Therefore, the convection effect on the air arc evolution process in a two parallel contact system is analyzed. A threedimensional(3 D) magneto–hydro–dynamic(MHD) model of arc simulation is built. In this model, the anode consists of two parallel contacts and a bonding conductor. A nonlinear voltage–current density characteristic is employed to represent the near-anode and near-cathode voltage. The current density, arc voltage and currents through every contact are obtained. The influence of convection and conduction on the arc evolution process are quantitatively calculated. The displacements of the arc roots are obtained and the asymmetry of the arc root motion is analyzed. The arc evolution process of a two parallel contact system is preliminarily revealed. 相似文献