首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr(0.52)Ti(0.48)O(3) (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxidesemiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-microm process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.  相似文献   

2.
A screen-printed PZT thick film with a final thickness of about 40 microm was deposited on a porous PZT substrate to obtain an integrated structure for ultrasonic transducer applications. This process makes it possible to decrease the number of steps in the fabrication of high-frequency, single-element transducers. The porous PZT substrates allow high acoustic impedance and attenuation to be obtained, satisfying transducer backing requirements for medical imaging. The piezoelectric thick films deliver high electromechanical performance, comparable to that of standard bulk ceramics (thickness coupling factor over 45%). Based on these structures, high-frequency transducers with a center frequency of about 25 MHz were produced and characterized. As a result, good sensitivity and axial resolution were obtained in comparison with similar transducers integrating a lead titanate (PT) disk as active material. The two transducers were integrated into a high-frequency imaging system, and comparative skin images are shown.  相似文献   

3.
余登  钱梦騄  胡文祥 《声学技术》2003,22(4):209-212
文章着重叙述一种用激光超声检测圆管超声换能器响应的方法。为激励和接收轴对称声场,采用压电圆管作为压电换能元件,并分别用环氧、环氧加钨粉为背衬,制作了两种压电圆管换能器。由激光超声方法和自发自收脉冲反射法实验测定了所制作的换能器的频率响应,并比较了频谱分析结果。实验结果不仅在一定程度上说明了两种背衬的效果,同时也表明激光超声检测换能器响应的可行性。  相似文献   

4.
Ultrasonic transducers using polyurea piezoelectric thin film are studied in this paper. Aromatic polyurea thin films, prepared by vapor deposition polymerization, have useful characteristics for use as an ultrasonic transducer. This paper presents the fabrication and experimental evaluation of ultrasonic transducers formed using polyurea films. First, the vapor deposition polymerization process using two monomers is briefly reviewed, and the temperature conditions for higher piezoelectric constants are explored. Second, in order to test the fundamental characteristics of this material as a high-frequency, ultrasonic transducer, a polyurea film of 2.5 microm thickness was deposited on a silicon substrate. In the pulse/echo experiment results, a resonant frequency of about 100 MHz was observed. Third, we fabricated a concave point focus transducer and a cylindrical line focus transducer. To examine the performances of the focus transducers, two-dimensional images of a coin and V(z) curve measurements for an aluminum surface were demonstrated.  相似文献   

5.
Micromachined high frequency ferroelectric sonar transducers   总被引:11,自引:0,他引:11  
Millimeter-sized ferroelectric monomorph sonar transducers have been built using sol-gel PZT on micromachined silicon wafers. First generation transducer arrays with diaphragms varying in size from 0.2 to 2 mm were tested. Second generation 8×8 arrays have also been built and tested in water in the frequency range of 0.3 to 2 MHz. Improvements to the sol-gel process have yielded high-quality, crack-free PZT films up to 12 μm in thickness, which leads directly to higher sensitivity and figure of merit for acoustic transducers. The longitudinal piezoelectric coefficient d33 is 140 to 240 pC/N, measured through a double beam laser interferometer. Remanent polarization of 28 μC/cm2, a coercive field of 30 kV/cm, and dielectric constant of 1400 were measured on 4-μm thick films. Test results are presented, including frequency response, beam patterns, and sensitivity. High-resolution acoustic images have been generated using these transducers and a four-element underwater acoustic lens. Potential applications for these transducers include high-frequency imaging sonars, medical ultrasound, ultrasonic communication links, and flaw detection (NDT)  相似文献   

6.
Immersion ultrasonic probes for measurements and imaging at high temperature are presented. The probes consist of sol-gel-sprayed thick films as piezoelectric ultrasonic transducers (UTs) directly deposited onto steel buffer rods. They operate in pulse-echo mode at temperatures up to 500/spl deg/C. The operating ultrasonic frequency is between 5 MHz and 20 MHz, controlled by the film thickness. The ultrasonic thickness measurement of a steel plate with the probe fully immersed in molten zinc at 450/spl deg/C was demonstrated using ultrasonic plane waves. For imaging purposes, the probing end of the steel buffer rod was machined into a semispherical concave shape to form an ultrasonic lens and achieve high spatial resolution with focused ultrasound in liquids. Ultrasonic surface and subsurface imaging using a mechanical raster scan of the focused probe in silicone oil at 200/spl deg/C was also carried out. The importance of the signal-to-noise ratio (SNR) in the pulse-echo measurement is discussed.  相似文献   

7.
Design considerations for piezoelectric polymer ultrasound transducers   总被引:5,自引:0,他引:5  
Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.  相似文献   

8.
Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.  相似文献   

9.
A sol gel composite process has been used to produce lead zirconate titanate coatings in the thickness range of 3 to 100 mum on aluminum substrates. The complex permittivity (epsilon(33)(S )), elastic stiffness (c(33)(D)), and the piezoelectric constant (h(33)) of the coating and the complex elastic stiffness (c(33)(D)) of the substrate have been determined using impedance measurements and a commercially available software program [Piezoelectric Resonance Analysis Program PRAP 2.0, TASI Technical Software, Kingston, Ontario, Canada]. The complex components of the material parameters account for the losses within the film and the substrate. Sol gel composite films on aluminum have a dielectric constant of 220 with an imaginary component of 1% and an electromechanical coupling coefficient of up to 0.24 with an imaginary component of 3%. These films are applied to the fabrication of a high frequency transducers suitable for ultrasound biomicroscopy (UBM). By combining the sol gel composite material with existing transducer fabrication techniques, single-element focusing transducers have been produced that operate in the frequency range of 70 to 160 MHz. Devices have -6-dB bandwidths up to 52% and minimum insertion losses ranging from -47 to -58 dB. Real-time images of phantom materials and ex vivo biological samples are shown.  相似文献   

10.
A 100-MHz ultrasonic linear transducer array made from a piezoelectric zinc oxide thin film on a sapphire substrate was developed and evaluated. Epitaxial, high-acoustic quality 10-μm-thick ZnO film layers were produced by rf-magnetron sputter deposition onto a (111)-oriented gold film (with a chromium adhesion layer) that was vacuum-evaporated onto a (0001) sapphire surface. We found that, in well-oriented growth of gold, it is important to control the chromium sublayer thickness (less than 5 nm). An array was constructed by photolithography with an appropriate etch. V-shaped grooves between adjacent elements were formed by using an anisotropic etchant (HCl and HNO3-based) that preferentially etched the c-plane of ZnO. Typical array elements were 90 μm wide, 3.2 mm long, and 10 μm thick, and the pitch of an array was typically 100 μm. Our fine uniform array resulted in uniform ultrasonic response of individual elements throughout the array. For a 32-element array, the ultrasound beam in the azimuth plane in water could be electronically focused in the 100 MHz range to obtain a half-amplitude width of 60 μm at the focal depth, agreeing well with theoretical predictions. Besides the use demonstrated with this present transducer, piezoelectric thin films should also lead to fabrication of various other kinds of ultrasonic transducers that can operate at high frequencies and should provide opportunities for miniaturizing transducers and making integrated ultrasonic devices  相似文献   

11.
In recent years, single crystal materials with better piezoelectric properties than the existing ceramics have become available. These new materials will potentially provide improved performance in ultrasonic applications such as NDT, sonar and biomedical diagnosis. In order to select the best material and optimize transducer design, comparison must be carried out. However, due to material and transducer fabrication costs, initial comparisons can be based on simulation. In this paper, a comparison is reported between transducers based on the single crystal lead magnesium niobate-lead titanate (PMN-32% PT) and the ceramic lead zirconate titanate (PZT-5H). Material performance is assessed both for single materials and piezoelectric-polymer composite configurations by defining the relevant piezoelectric parameters. Furthermore, the effect of such parameters on the performance of different ultrasonic transducers is illustrated. Practical limitations are also discussed. We conclude that the new single crystal material will be capable of outperforming the present widely used ceramic for almost all practical applications.  相似文献   

12.
Medical ultrasonography is a powerful and cost-effective diagnostic technique. To date, high-end medical imaging systems are able to efficiently implement real-time image formation techniques that can dramatically improve the diagnostic capabilities of ultrasound. Highly performing and thermally efficient ultrasound probes are then required to successfully enable the most advanced techniques. In this context, ultrasound transducer technology is the current limiting factor. Capacitive micromachined ultrasonic transducers (CMUTs) are micro-electro-mechanical systems (MEMS)-based devices that have been widely recognized as a valuable alternative to piezoelectric transducer technology in a variety of medical imaging applications. Wideband operation, good thermal efficiency, and low fabrication cost, especially for those applications requiring high-volume production of small-area dice, are strength factors that may justify the adoption of this MEMS technology in the medical ultrasound imaging field. This paper presents the design, development, fabrication, and characterization of a 12-MHz ultrasound probe for medical imaging, based on a CMUT array. The CMUT array is microfabricated and packed using a novel fabrication concept specifically conceived for imaging transducer arrays. The performance of the developed probe is optimized by including analog front-end reception electronics. Characterization and imaging results are used to assess the performance of CMUTs with respect to conventional piezoelectric transducers.  相似文献   

13.
In recent years, single crystal materials with better piezoelectric properties than the existing ceramics have become available. These new materials will potentially provide improved performance in ultrasonic applications such as NDT, sonar and biomedical diagnosis. In order to select the best material and optimize transducer design, comparison must be carried out. However, due to material and transducer fabrication costs, initial comparisons can be based on simulation. In this paper, a comparison is reported between transducers based on the single crystal lead magnesium niobate-lead titanate (PMN-32% PT) and the ceramic lead zirconate titanate (PZT-5H). Material performance is assessed both for single materials and piezoelectric-polymer composite configurations by defining the relevant piezoelectric parameters. Furthermore, the effect of such parameters on the performance of different ultrasonic transducers is illustrated. Practical limitations are also discussed. We conclude that the new single crystal material will be capable of outperforming the present widely used ceramic for almost all practical applications.  相似文献   

14.
Thin film integrated circuits compatible resonant structures using the lowest order symmetric Lamb wave propagating in thin aluminum nitride (AlN) film membranes have been studied. The 2-mum thick, highly c-oriented AlN piezoelectric films have been grown on silicon by pulsed, direct-current magnetron reactive sputter deposition. The films were deposited at room temperature and had typical full-width, half-maximum value of the rocking curve of about 2 degrees. Thin film plate acoustic resonators were designed and micromachined using low resolution photolithography and deep silicon etching. Plate waves, having a 12-mum wavelength, were excited by means of both interdigital (IDT) and longitudinal wave transducers using lateral field excitation (LW-LFE), and reflected by periodical aluminum-strip gratings deposited on top of the membrane. The existence of a frequency stopband and strong grating reflectivity have been theoretically predicted and experimentally observed. One-port resonator designs having varying cavity lengths and transducer topology were fabricated and characterized. A quality factor exceeding 3000 has been demonstrated at frequencies of about 885 MHz. The IDT based film plate acoustic resonators (FPAR) technology proved to be preferable when lower costs and higher Qs are pursued. The LW-LFE-based FPAR technology offers higher excitation efficiency at costs comparable to that of the thin film bulk acoustic wave resonator (FBAR) technology  相似文献   

15.
张琪  张彬  许伟杰  童晖 《声学技术》2024,43(2):292-298
新型弛豫铁电单晶材料铌铟酸铅-铌镁酸铅-钛酸铅晶体(Pb(In1/2Nb1/2) O3-Pb(Mg1/3Nb2/3) O3-PbTiO3, PIMNT)的压电系数是陶瓷材料的 6 倍以上,应变量高出压电陶瓷 10 倍以上,具有较高的机电耦合系数,压电性能优于传统 PZT 材料。文章将单晶材料应用于带空气腔的弯曲圆盘换能器中,利用 ANSYS 仿真软件优化换能器结构,确定换能器尺寸,设计制作 PIMNT 压电单晶换能器和PZT4压电陶瓷换能器,并进行了水池实验。换能器实测结果与仿真结果保持一致,单晶换能器的谐振频率为 2.85 kHz,最大发送电压响应为 136.3 dB。结果表明,相比于同尺寸的陶瓷换能器,将 PIMNT 压电单晶应用于弯曲圆盘换能器可降低谐振频率,提高发送电压响应,提升换能器的工作性能,为进一步改善单晶换能器综合性能提供参考。  相似文献   

16.
Micromachining techniques, in combination with low temperature ceramic composite sol-gel processing, have been used to fabricate annular array thickness-mode piezoelectric micro ultrasonic transducers (Tm-pMUTs). The processing techniques of low temperature (710 degrees C) composite sol-gel ceramic (sol + ceramic powder) deposition and wet etching were used to deposit and structure 27-microm thick lead zirconate titanate (PZT) films on silicon substrates to produce annular array Tm-pMUTs. Using these techniques, high quality PZT materials with near bulk permittivity have been obtained. The Tm-pMUT devices were shown to resonate at approximately 60 MHz in air and 50 MHz in water. From resonance measurements k(t) values ranging between 0.2 and 0.47 have been calculated and shown to depend on the level of porosity within the film. Lower values of kt were observed for films with higher levels of porosity, which was attributed to the relative decrease in the effective piezoelectric coefficient epsilon(33) with respect to stiffness and permittivity as a function of increasing porosity. This paper presents the successful micro-fabrication of a Tm-pMUT device and discusses the optimization of the poling conditions and effect of PZT microstructure on the coupling coefficient k(t). Pulse echo measurements in water, showing a -6 dB center frequency of 53 MHz and 47% -6 dB bandwidth, using a target 15 mm away from the transducer, have been included to demonstrate successful operation of the device. Full analysis of these results will be conducted in later publications.  相似文献   

17.
Conventional wisdom stipulates that high power ultrasound without direct or indirect transducer contact with the medium to be treated is not possible. This seemingly correct notion is based upon two major hurdles: inefficient transmission of ultrasound from the piezoelectric material into air/gases and exorbitant attenuation of ultrasound by gases. The latter is a natural phenomenon about which nothing can be done, and the former requires an un-conventional approach to transducer design. After many years of R& D in this area, we have finally succeeded in producing transducers that generate immense acoustic pressure in air in the frequency range of ∼50 kHz→10 MHz. By using these transducers without any contact with the material, we demonstrate destruction of 99.9% of dried bacterial spore samples of a close relative of anthrax, Bacillus thuringiensis. Following further refinement of the transducers and the mechanism of their excitation, we anticipate that non-contact ultrasound will have numerous applications including inactivation of agents of bioterrorism and sterilization of medical and surgical equipment, food materials, and air-duct systems of buildings, airplanes, space stations, and others. Electronic Publication  相似文献   

18.
Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain–property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors, acoustic tweezers and ultrasonic motors, are evaluated to provide a thorough understanding of the materials’ behavior under operational conditions. Structure–property–performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers.  相似文献   

19.
Interdigital pair bonding is a novel methodology that enables the fabrication of high frequency piezoelectric composites with high volume fractions of the ceramic phase. This enhancement in ceramic volume fraction significantly reduces the dimensional scale of the epoxy phase and increases the related effective physical parameters of the composite, such as dielectric constant and the longitudinal sound velocity, which are major concerns in the development of high frequency piezoelectric composites. In this paper, a method called interdigital pair bonding (IPB) is used to prepare 1-3 piezoelectric composite with a pitch of 40 microns, a kerf of 4 microns, and a ceramic volume fraction of 81%. The composites prepared in this fashion exhibited a very pure thickness-mode resonance up to a frequency of 50 MHz. Unlike the 2-2 piezoelectric composites with the same ceramic and epoxy scales developed earlier, the anticipated lateral modes between 50 to 100 MHz were not observed in the current 1-3 composites. The mechanisms for the elimination of the lateral modes at high frequency are discussed. The effective electromechanical coupling coefficient of the composite was 0.72 at a frequency of 50 MHz. The composites showed a high longitudinal sound velocity of 4300 m/s and a high clamped dielectric constant of 1111 epsilon 0, which will benefit the development of high frequency ultrasonic transducers and especially high frequency transducer arrays for medical imaging.  相似文献   

20.
Diamond films are very desirable for application to SAW devices because of their high acoustic wave velocity, which allows the extending of the frequency limit of operation at a given interdigital transducer line-width resolution. Use of high-quality AIN as the piezoelectric layer in conjunction with diamond is also desirable because of its high SAW velocity--the highest among all piezoelectric materials--together with its excellent electrical, mechanical, and chemical properties. The problems arising in the growth of A1N films on diamond have prevented, until now, the use of this combination of materials. In this paper we present recent results on the growth of highly oriented, low-stressed A1N films on diamond. SAW propagation on A1N/diamond has been theoretically investigated together with electromechanical coupling for both the Rayleigh and the Sezawa modes. The theoretical calculations show that high SAW velocities are achievable with good coupling efficiencies. Under proper conditions very large piezoelectric couplings are predicted--k2 = 2.2 and 4% for the Rayleigh and the Sezawa wave, respectively--comparable to those observed in strongly piezoelectric single crystals such as LiNbO3, but with SAW velocities approximately two-fold higher. Experiments performed on A1N/diamond/Si SAW test devices have shown good agreement between experimental results and theoretical predictions and demonstrate the feasibility of SAW devices based on this technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号