首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telechelic polymers by living and controlled/living polymerization methods   总被引:1,自引:0,他引:1  
Telechelic polymers, defined as macromolecules that contain two reactive end groups, are used as cross-linkers, chain extenders, and important building blocks for various macromolecular structures, including block and graft copolymers, star, hyperbranched or dendritic polymers. This review article describes the general techniques for the preparation of telechelic polymers by living and controlled/living polymerization methods; namely atom transfer radical polymerization, nitroxide mediated radical polymerization, reversible addition-fragmentation chain transfer polymerization, iniferters, iodine transfer polymerization, cobalt mediated radical polymerization, organotellurium-, organostibine-, organobismuthine-mediated living radical polymerization, living anionic polymerization, living cationic polymerization, and ring opening metathesis polymerization. The efficient click reactions for the synthesis of telechelic polymers are also presented.  相似文献   

2.
Terminal 1,3-buadiene (Bd) functional polymers are stoichiometrically reacted with living anionic polymers in a monoaddition manner in THF at ?78 °C, but neither polymerization nor oligomerization occurs under the conditions. By utilizing this reactive but non-polymerizable character of the Bd function toward living anionic polymers, a variety of block copolymers and regular and asymmetric star-branched polymers were successfully synthesized. In these syntheses, the terminal Bd functionalized polymers work effectively as reactive building blocks, namely polymeric efficient linking agents, to construct such architectural polymers. Since all the polymer segments used for the syntheses were derived from living anionic polymers and the linking reactions quantitatively proceeded, the architectural polymers herein synthesized were well-defined in structure and were precisely controlled in chain length. A new protocol based on iterative approach by repeating a two reaction sequence involving linking reaction and re-introduction of Bd group was proposed and developed to successively synthesize asymmetric star-branched polymers up to a 6-arm ABCDEF type. The terminal Bd functionalized polymers were readily and quantitatively converted to anhydride or diepoxide functionalized polymers by Diels–Alder or oxidation reactions. Because of their high reactive termini, the resulting polymers are also usable as reactive building blocks to synthesize the core-functionalized star-branched polymers with carboxylic acids or hydroxyl groups. The reactions between terminal anhydride and amine functionalized polymers were carried out in bulk at 180 °C to examine the synthetic possibility of star-branched polymers under such conditions.  相似文献   

3.
This review presents firstly the synthesis of various dendritic hyperbranched polymers with well‐defined structures by generation‐based growth methodologies using living/controlled polymerization. Secondly, the synthesis of dendritic hyperbranched poly(methyl methacrylate)s (PMMAs) and their functionalized block copolymers using a novel iterative methodology is described. The methodology involves a two‐reaction sequence in each iterative process: (a) a linking reaction of α‐functionalized living anionic PMMA with tert‐butyldimethylsilyloxymethylphenyl (SMP) groups with benzyl bromide (BnBr)‐chain‐end‐functionalized polymer and (b) a transformation reaction of the SMP groups into BnBr functions. This reaction sequence is repeated several times to construct high‐generation (maximum seventh generation) dendritic hyperbranched polymers. Similar branched architectural block copolymers have also been synthesized by the same iterative methodology using other α‐functionalized living anionic polymers. Surface structures of the resulting dendritic hyperbranched block copolymers composed of PMMA and poly(2‐(perfluorobutyl)ethyl methacrylate) segments have been characterized using X‐ray photoelectron spectroscopy and contact angle measurements. Solution behaviors of dendritic hyperbranched PMMAs with different generations and branch densities are discussed based on their intrinsic viscosities, g′ values and Rh values. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
The design of efficient gene delivery vectors is a challenging task in gene therapy. Recent progress in living/controlled radical polymerizations (LRPs), in particular atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization providing a means for the design and synthesis of new polymeric gene vectors with well-defined compositions, architectures and functionalities is reviewed here. Polymeric gene vectors with different architectures, including homopolymers, block copolymers, graft copolymers, and star-shaped polymers, are conveniently prepared via ATRP and RAFT polymerization. The corresponding synthesis strategies are described in detail. The recent research activities indicate that ATRP and RAFT polymerization have become essential tools for the design and synthesis of advanced, noble and novel gene carriers.  相似文献   

5.
Reversible addition fragmentation chain transfer (RAFT) polymerization has made a huge impact in macromolecular design. The first block copolymers were described early on, followed by star polymers and then graft polymers. In the last five years, the types of architectures available have become more and more complex. Star and graft polymers now have block structures within their branches, or a range of different branches can be found growing from one core or backbone. Even the synthesis of hyperbranched polymers can be positively influenced by RAFT polymerization, allowing end group control or control over the branching density. The creative combination of RAFT polymerization with other polymerization techniques, such as ATRP or ring-opening polymerization, has extended the array of available architectures. In addition, dendrimers were incorporated either as star core or endfunctionalities. A range of synthetic chemistry pathways have been utilized and combined with polymer chemistry, pathways such as ‘click chemistry’. These combinations have allowed the creation of novel structures. RAFT processes have been combined with natural polymers and other naturally occurring building blocks, including carbohydrates, polysaccharides, cyclodextrins, proteins and peptides. The result from the intertwining of natural and synthetic materials has resulted in the formation of hybrid biopolymers. Following these developments over the last few years, it is remarkable to see that RAFT polymerization has grown from a lab curiosity to a polymerization tool that is now been used with confidence in material design. Most of the described synthetic procedures in the literature in recent years, which incorporate RAFT polymerization, have been undertaken in order to design advanced materials.  相似文献   

6.
Hu Hui  Fan Xiao-dong  Cao Zhong-lin 《Polymer》2005,46(22):9514-9522
Novel dendrimer derivatives combining the temperature- and pH-sensitivities are synthesized. At first, polyamidoamine (PAMAM) dendrimers with generations 1-5 are synthesized by the reaction of ethylenediamine with methyl acrylate, and then the dendrimers are acylated by chloroacetyl chloride to obtain PAMAM-Cl, which can act as a macroinitiator for further synthesizing functional dendrimers. For fulfilling this goal, the polymers consisting of a dendritic PAMAM core and poly(N,N-dimethylaminoethyl methacrylate) (PDMA) shell are synthesized by atom transfer radical polymerization (ATRP). Their macromolecular structures are characterized by FTIR, 1H NMR, DSC and particle size analyses, and their aqueous solutions are inspected by UV spectroscopy for understanding their thermo- and pH-sensitivities. The results show that novel dendrimer derivatives exhibit clearly thermo- and pH-respondings in accordance with the change of the environment. Using chlorambucil (CLB) as a model drug, the behaviors of the controlled drug release from polymers with different average graft length of PDMA are studied. The results indicate that the rate of the drug release can be effectively controlled by the pH value.  相似文献   

7.
The precise synthesis of novel ferrocene-based regular and asymmetric star-branched polymers by a methodology using specially designed 1,1-diphenylethylene derivatives in conjunction with living anionic polymerization of ferrocenylmethyl methacrylate (FMMA) is described. The methodology involves three reaction steps, i.e., (1) introduction of 3-(tert-butyldimethylsilyloxymethyl)phenyl (SMOP) group(s) at the polymer chain end or in-chain, (2) conversion of the SMOP group(s) to α-phenyl acrylate function(s), and (3) a linking reaction of the α-phenyl acrylate function(s) with the living anionic polymer of FMMA or methyl methacrylate. By developing this methodology, a variety of 3-arm \textAA2 {\text{AA}^{\prime}_{2}} , A2B, AB2, ABC and 4-arm A4, A3B, A2B2, A2BC, and ABC2 star-branched polymers with well-defined structures have been successfully synthesized. The A, B, and C segments are poly(FMMA), polystyrene, and poly(methyl methacrylate), respectively.  相似文献   

8.
9.
The controlled synthesis of narrowly distributed low molecular weight polymers with functionalization possibilities is of great industrial interests. Although living polymerization allows for control over polymer architecture, the production of low molecular weight polymers with low polydispersities via living polymerization systems is challenged by the use of large amounts of catalysts and broadening in molecular weight distribution. This review addresses the synthesis of narrowly distributed, functional, low molecular weight polyethylene and polyethylene mimics. The review is structured for quick identification of relevant systems for the production of specific polymer architectures with specific cost, efficiency, and safety concerns.  相似文献   

10.
Xiao-hui Liu  Xiu-lan Tang 《Polymer》2010,51(13):2857-7531
A facile self-condensing vinyl polymerization (SCVP) system, the combination of glycidyl methacrylate, Cp2TiCl2 and Zn, has been firstly used to prepare novel hyperbranched polymers, consisting of vinyl polymers as the backbone, and cyclic ester polymers (poly(?-caprolactone) or poly(l-lactide)) as the side chains. The polymerizations are initiated by the epoxide radical ring-opening catalyzed by Cp2Ti(III)Cl which is generated in situ via the reaction of Cp2TiCl2 with Zn. The key to success is that the polymerizations can proceed concurrently via two dissimilar chemistries possessing the opposite active initiating species, including ring-opening polymerization (ROP) and controlled/living radical polymerization (CRP). We have demonstrated that this facile one-step polymerization technique can be applied successfully to prepare highly branched polymers with a multiplicity of end reactive functionalities including Ti alkoxide, hydroxyl and vinyl functional groups.  相似文献   

11.
The purpose of this review is to provide appropriate details concerning the application of ionic liquids (IL)s associated with microwave-assisted polymer chemistry. From the viewpoint of microwave chemistry, one of the key significant advantages of ILs is their high polarity, which is variable, depending on the cation and anion and therefore can effectively be tuned to a particular application. Hence, these liquids offer a great potential for the innovative application of microwaves for organic synthesis as well as for polymer science. ILs efficiently absorb microwave energy through an ionic conduction mechanism, and thus are employed as solvents and co-solvents, leading to a very high heating rate and a significantly shortened reaction time. Since an IL-based and microwave-accelerated procedure is efficient and environmentally benign, we believe that this method may have some potential applications in the synthesis of a wide variety of vinyl and non-vinyl polymers. This review describes application of combination of ILs with microwave irradiation as a modern tool for the addition and step-growth polymerization as well as modification of polymers and it was compared with ILs alone and conventional polymerization method.  相似文献   

12.
Pure head to head (H–H) addition polymers, such as H–H polyolefins, H–H acrylates and H–H poly(vinyl halides), have been of interest for the understanding of the structure/properties relationship of addition polymers. These polymer structures have provided challenges of synthesis, characterization and of the measurements of their mechanical and rheological properties. H–H polymers have never been prepared by direct synthesis and indirect polymerization techniques have to be used. Some of the H–H polymers, the polyolefins, were made by polymerization of properly substituted dienes followed by hydrogenation. The H–H polyacrylates were synthesized by copolymerization followed by polymer reactions and the poly(vinyl halides), by halogenation of poly(1,4-butadiene). Improved halogenation techniques for poly(1,4-butadiene) have made H–H poly(vinyl chloride) and H–H poly(vinyl bromide) accessible in larger quantities and have allowed an extensive characterization of these polymers.

Blends of H–H with H–T polymers as well as H–H polymers with other polymers were studied. H–H Poly(vinyl chloride) or poly(vinyl bromide) blends with polycaprolactone and poly(methyl methacrylate) were also investigated. The thermal behavior and the thermal degradation behavior of these blends were investigated. The most striking result of these investigations was that H–H and H–T poly(vinyl chloride) are immiscible as is H–H and H–T polyisobutylene over almost the entire range of compositions.  相似文献   


13.
Series of graft copolymers with [Poly(epichlorohydrin-co-ethylene oxide)] [Poly(ECH-co-EO)] as backbone and polystyrene (PS), poly(isoprene) (PI) or their block copolymers as side chains were successfully synthesized by combination of ring-opening polymerization (ROP) with living anionic polymerization. The Poly(ECH-co-EO) with high molecular weight (Mn = 3.3 × 104 g/mol) and low polydispersity index (PDI = 1.34) was firstly synthesized by ring-ROP using ethylene glycol potassium as initiator and triisobutylaluminium (i-Bu3Al) as activator. Subsequently, by “grafting onto” strategy, the graft copolymers Poly(ECH-co-EO)-g-PI, Poly(ECH-co-EO)-g-PS and Poly(ECH-co-EO)-g-(PI-b-PS) were obtained using the coupling reaction between living PILi+, PSLi+ or PS-b-PILi+ species capped with or without 1,1-diphenylethylene (DPE) agent and chloromethyl groups on poly(ECH-co-EO). By model experiment, the addition of DPE agent was confirmed to have an important effect on the grafting efficiency at room temperature. Finally, the target graft copolymers and intermediates were characterized by SEC, 1H NMR, MALLS and FTIR in detail, and thermal behaviours of the graft copolymers were also investigated by DSC measurement.  相似文献   

14.
Virginie Rejsek  Alain Deffieux 《Polymer》2010,51(24):5674-5679
The anionic polymerization of ethylene oxide (EO) initiated by lithium derivatives is extremely sluggish and only yields very low molar mass EO oligomers because of the low reactivity of lithium alkoxide species. We show here that using the monomer-activated anionic polymerization approach, one can activate the C-O-Li bonds towards EO polymerization at low temperature and in non polar media. Starting from living polystyryllithium and polyisoprenyllithium, addition of triisobutylaluminum (i-Bu3Al) in excess to lithium species triggers the propagation reaction of EO, allowing the direct synthesis, in a few hours, of poly(styrene-b-ethylene oxide) and poly(isoprene-b-ethylene oxide) diblock copolymers, with a molar mass of the PEO block up to 10 000 g/mol.  相似文献   

15.
Thermoresponsive polymers have been the subject of numerous publications and research topics in the last few decades mostly driven by their easily controllable temperature stimulus and high potential for in vitro and in vivo applications. P(NIPAAm) is the most studied amongst these polymers, but recently other types of polymers are increasingly being investigated for their thermoresponsive behavior. In particular, polymers bearing a short oligo ethylene glycol (OEG) side chain have been shown to combine the biocompatibility of polyethylene glycol (PEG) with a versatile and controllable LCST behavior. These polymers can be synthesized via controlled radical polymerization techniques from various monomers consisting of an OEG chain and a polymerizable group like a (meth)acrylate, styrene or acrylamide. OEG acrylates offer significant advantages over, e.g., OEG methacrylates as the lower hydrophilicity of the backbone facilitates thermoresponsive behavior with smaller, more defined side chains. Furthermore, PEG acrylates can be polymerized using all major controlled radical polymerization techniques, unlike OEG methacrylates. This review will focus on OEG acrylate based (co)polymers and will provide a comprehensive overview of their reported thermoresponsive properties. The combination and comparison of this data will not only highlight the potential of these monomers, but will also serve as a starting point for future studies.  相似文献   

16.
A novel biodegradable copolymer was synthesized from poly(vinyl alcohol) and poly(p-dioxanone) by ring-opening polymerization. The molecular structure of the copolymer was characterized by one- and two-dimensional NMR spectroscopy. The results of differential scanning calorimetry (DSC) show that the amphiphilic and comb grafted structure of the copolymer make its crystalline behavior different from that of the poly(p-dioxanone) homopolymer (PPDO). The in vitro degradation rate of the copolymers can be controlled via adjusting the number and length of PPDO segments of PVA-g-PPDO copolymers. The copolymer has a potential application in biomedical materials or in the controlled release of drug.  相似文献   

17.
Homo‐ and copolymers of vinyl esters including vinyl acetate (VAc) and vinyl benzoate (VBz) were synthesized via the reverse iodine transfer radical polymerization technique. Polymerization was carried out in the presence of iodine as the in situ generator of the transfer agent and 2,2′‐azobis(isobutyronitrile) as the initiator at 70 °C. Reverse iodine transfer radical homopolymerization of VAc and VBz led to conversions of 76 and 57%, number‐average molecular weights of 8266 and 9814 g mol?1 and molecular weight distributions of 1.58 and 1.49, respectively. The microstructure of the synthesized polymers was investigated in detail using gel permeation chromatography, 1H NMR, 13C NMR and distortionless enhancement of polarization transfer (135° decoupler pulse) techniques. Relatively narrow molecular weight distribution and controlled and predictable trend of molecular weight versus conversion were observed for the synthesized polymers, showing that reverse iodine transfer radical homo‐ and copolymerization of VAc and VBz proceeded with controlled characteristics. Results of molecular weight and its distribution along with the 1H NMR spectra recorded for homo‐ and copolymers indicated that side reactions can occur during the course of polymerization with a significant contribution when VAc, even in a small amount, was present in the reaction mixture. This can result in polymer chains with aldehyde dead end and broadening of the molecular weight distribution. © 2015 Society of Chemical Industry  相似文献   

18.
Reagentless amperometric biosensors were prepared using a variety of nitrogen donor groups containing co-polymers. The polymers were coordinated with Os-bis-N,N-(2,2′-bipyridil)-dichloride via a ligand exchange reaction thus assuring an efficient electron-transfer pathway between the polymer-entrapped horseradish peroxidase and the electrode surface by means of a sequence of electron-hopping steps. The impact of structural features of the polymer such as spacer length between the Os-complex and the polymer backbone or the ratio of 4-vinylpyridine and butylmethacrylate in a co-polymer on the activity of the horseradish peroxidase biosensors was investigated.  相似文献   

19.
Poly(ethylene glycol) (PEG) is an important water‐soluble polymer, which is widely used in the biomedical field because of its good biodegradability, biocompatibility and permeability. It is usually synthesized by anionic polymerization of ethylene oxide but side reactions lead to the formation of some oligomers. High molecular weight PEG can be obtained, however, through coordinated anionic polymerization. Recently a novel controlled anionic polymerization based on the initiating system ammonium bromide/trialkylaluminium was reported. Related studies have shown that the controlled anionic polymerization allows the synthesis of linear polyethers with low dispersity in a wide range of molecular weights at ambient temperature. Unfortunately, so far this controlled anionic polymerization has not been used to synthesize polymers with complex architectures. In the work reported here, controlled anionic polymerization was combined with ‘click’ chemistry for the first time to synthesize polyethers with multiple arms. Firstly, controlled anionic polymerization was employed to synthesize a linear bromine‐terminated PEG (PEG‐Br) using ethylene oxide as the monomer and tetraoctylammonium bromide/triisobutylaluminium as the initiating system at room temperature. The terminal bromine in the PEG thus synthesized was then converted into an azide group by the reaction of PEG‐Br and sodium azide. A trifunctional linking agent was also prepared by the reaction of trimethylolpropane and propiolic acid. By using ‘click’ chemistry, a three‐arm PEG was finally obtained through the reaction of the azide‐terminated PEG and the trifunctional linking agent. The chemical structure of the polymer thus synthesized was characterized using infrared spectroscopy, NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and size‐exclusion chromatography with multi‐angle laser light scattering. It was found that the synthesized polyether possesses the designed structure. Considering the wide applicability of controlled anionic polymerization and ‘click’ chemistry, their combination is a valuable way to synthesize various polyethers with multiple arms. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
The progress in atom transfer radical polymerization (ATRP) provides an effective means for the design and preparation of functional membranes. Polymeric membranes with different macromolecular architectures applied in fuel cells, including block and graft copolymers are conveniently prepared via ATRP. Moreover, ATRP has also been widely used to introduce functionality onto the membrane surface to enhance its use in specific applications, such as antifouling, stimuli-responsive, adsorption function and pervaporation. In this review, the recent design and synthesis of advanced functional membranes via the ATRP technique are discussed in detail and their especial advantages are highlighted by selected examples extract the principles for preparation or modification of membranes using the ATRP methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号