共查询到19条相似文献,搜索用时 93 毫秒
1.
傅忠云 《重庆理工大学学报(自然科学版)》2007,21(19):93-96
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求. 相似文献
2.
傅忠云 《重庆理工大学学报(自然科学版)》2007,(10)
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求. 相似文献
3.
4.
电力系统负荷预测的周期性可调灰色模型 总被引:1,自引:1,他引:1
本文针对电力系统负荷变化的不可控性和周期性,通过采用Census Ⅱ分解方法分析季节因子,与历史负荷相比较,得到一系列长期趋势项,然后用可调灰色模型对分离出的长期趋势项进行预测,并用二分法调整u,v的取值,使得误差最小.将预测出的季节因子与长期趋势项重新组合,就得到日用电量的预测结果,实例表明,本系统对于呈周期性变化的电力负荷具有较好的预测效果. 相似文献
5.
建立了电力系统月负荷及年负荷预测的灰色动态模型,并验证了其准确性,为电网调度自动化和经济发展规划提供了较可靠的依据。 相似文献
6.
傅忠云 《山东电力高等专科学校学报》2007,(4):63-66
电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型。通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求。 相似文献
7.
本文对电力系统负荷预测的普通灰色模型进行了可调性改进,成为可调灰色预测模型,减少了建模的限制条件,应用范围更加广泛,可以控制、调整预测结果,使精度提高。文中对江苏省无锡市电力负荷使用四种预测方法比较,从理论和应用两方面证实了可调灰色模型明显的实用性。 相似文献
8.
基于关联分析的多因素电力负荷预测灰色模型群研究 总被引:14,自引:0,他引:14
针对目前电力负荷预测受到多种因素的影响,在灰色关联分析的基础上对灰色模型群进行了研究。以河北南网用电量为研究对象,将全社会用电量分为若干子系统,使用灰色关联分析的方法确定主因素变量,利用灰色模型群建模法,从不同方面建立多种预测模型,综合协调各个结果得到更为合理的预测值。 相似文献
9.
电力负荷预测通常采用神经网络方法,该方法训练时间较长,并且由于负荷受到气象因素影响,该算法预测的精度不是很高.为了克服当前存在的问题,采用粒子群算法优化BP神经网络的权值和阈值,归一化处理气象因素,利用神经网络预测短期电力负荷.实验结果表明,该方法比单纯BP神经网络预测具有明显优势. 相似文献
10.
11.
灰色预测模型被广泛运用于电力负荷预测中,取得了较好的效果,但是灰色预测模型在实际应用中的缺点和局限性导致其预测精度有待提高,存在改进的必要。本文对于灰色预测模型的改进,分别从优化初值和改进模型等方面进行,从而提高普通灰色GM(1,1)模型的预测精度。对初值的处理可以削弱异常值的影响,强化趋势,从而避免由于初值选择不当而造成预测误差。本文中对模型的改进主要通过建立等维新息预测模型、灰色粒子群组合预测模型和灰色BP神经网络组合预测模型来实现。通过这些对灰色预测模型的修正和改进,进一步提高了灰色预测模型的适用性.最大限唐妯提高了灰乍.GM(1,1)模型的预测精唐. 相似文献
12.
在现有文献研究的基础上,对生长曲线预测法作了进一步改进,提出了基于改进微粒群优化的电力
负荷生长曲线预测模型,通过在电力负荷实例中的应用,并与基于微粒群优化的电力负荷灰色预测模型进行了效果
比较,验证了基于改进微粒群优化的电力负荷生长曲线预测模型具有很好的预测精度和通用性。 相似文献
13.
针对基于线性加权和处理成单目标优化问题的传统方法存在的缺陷,提出使用粒子群优化算法求解EELD多目标优化问题。该方法通过对粒子群算法个体极值和全局极值选取方式的改进,实现了对EELD多目标优化问题的非劣最优解集的搜索,为决策者提供了丰富的参考信息。在此基础上,应用模糊满意度方法求出的最优折衷解为调度运行人员提供了最佳调度折衷方案。最后,对一个三机系统进行了测试,并与线性加权人工神经网络法进行了比较分析,仿真结果验证了该方法的有效性。 相似文献
14.
侯宜祥 《安徽电气工程职业技术学院学报》2010,15(3):57-59
短期负荷预测是电力系统安全经济运行管理的一个基本环节。提出了基于相似日和改进粒子群算法的短期负荷预测方法,在相似负荷曲线中寻找最佳预测负荷曲线,并采用随机变异机制增强粒子群体的多样性。仿真算例验证了上述算法的有效性。 相似文献
15.
为解决电力系统中的经济负荷分配问题,将改进粒子群算法用于其中。该算法是以基本粒子群算法为基础,利用优化惯性权重策略以及改进最优最差粒子策略,使改进粒子群算法具有高效率全局搜索能力。对三个算例进行仿真测试,证实该算法可有效地解决经济负荷分配问题;性能对比显示,该算法求得的解优于基本粒子群算法及其它优化算法所求得的解。 相似文献
16.
周涛 《上海电力学院学报》2014,30(4)
粒子群算法在电力系统无功优化中已经得到了广泛的应用,但是传统粒子群算法易陷入局部最优、后期多样性差,得不到最优解。在原有无功优化数学模型的基础上,引入了基于细菌趋化的粒子群改进算法。通过算例表明,该算法可以有效地克服以上缺点,优化计算结果。 相似文献
17.
传统粒子群算法易陷入局部最优、后期多样性差,得不到最优解.在原有无功优化数学模型的基础上,引入了基于细菌趋化的粒子群改进算法.通过算例表明,该算法可以有效克服传统粒子群算法的缺点,优化计算结果. 相似文献
18.
提出了基于粒子群优化算法—Elman神经网络的电力系统短期负荷预测模型,采用具有动态递归性能的Elman神经网络,可增强负荷预测模型的联想和泛化推理能力,保证负荷预测的精度。采用粒子群优化算法对Elman神经网络进行学习训练,可充分利用粒子群优化算法的全局寻优性能,克服常规学习算法易于陷入局部最优解、收敛速度慢、编程复杂等缺陷。通过对地区电网负荷系统的实例仿真证实了所提出方法的有效性,获得了较满意的预测精度,平均绝对误差和最大相对误差分别达到1.988%和4.673%。为该模型用于实际工程取得了有效的进展。 相似文献
19.
应用传统粒子群算法(PSO)于电力系统无功优化问题存在收敛精度不高、陷入局部最优的缺点,利用微分进化算法(DE)的随机变异性,将当前所产生的局部最优值进行变异,再重回PSO搜寻全局最优值,从而提高了PSO算法的寻优特性,应用于IEEE30节点,验证所提算法是可行和有效的. 相似文献