首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete activation of most cyclin-dependent protein kinases (CDKs) requires phosphorylation by the CDK-activating kinase (CAK). In the budding yeast, Saccharomyces cerevisiae, the major CAK is a 44-kDa protein kinase known as Cak1. Cak1 is required for the phosphorylation and activation of Cdc28, a major CDK involved in cell cycle control. We addressed the possibility that Cak1 is also required for the activation of other yeast CDKs, such as Kin28, Pho85, and Srb10. We generated three new temperature-sensitive cak1 mutant strains, which arrested at the restrictive temperature with nonuniform budding morphology. All three cak1 mutants displayed significant synthetic interactions with loss-of-function mutations in CDC28 and KIN28. Loss of Cak1 function reduced the phosphorylation and activity of both Cdc28 and Kin28 but did not affect the activity of Pho85 or Srb10. In the presence of the Kin28 regulatory subunits Ccl1 and Tfb3, Kin28 was phosphorylated and activated when coexpressed with Cak1 in insect cells. We conclude that Cak1 is required for the activating phosphorylation of Kin28 as well as that of Cdc28.  相似文献   

2.
Regulation of CAK kinase activity by p53   总被引:1,自引:0,他引:1  
  相似文献   

3.
Proteolysis of mitotic cyclins depends on a multisubunit ubiquitin-protein ligase, the anaphase promoting complex (APC). Proteolysis commences during anaphase, persisting throughout G1 until it is terminated by cyclin-dependent kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was shown to require association of the APC with the substrate-specific activator Hct1 (also called Cdh1). Phosphorylation of Hct1 by CDKs blocked the Hct1-APC interaction. The mutual inhibition between APC and CDKs explains how cells suppress mitotic CDK activity during G1 and then establish a period with elevated kinase activity from S phase until anaphase.  相似文献   

4.
The fission yeast Sty1 MAP kinase is required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAP kinases, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, menadione, heat shock, and the protein synthesis inhibitor anisomycin. We have identified an upstream regulator that mediates activation of the Sty1 MAP kinase by multiple environmental stresses as the product of the mitotic catastrophe suppressor, mcs4. Mcs4 is structurally and functionally homologous to the budding yeast SSK1 response regulator, suggesting that the eukaryotic stress-activated MAP kinase pathway is controlled by a conserved two-component system. Mcs4 acts upstream of Wak1, a homolog of the SSK2 and SSK22 MEK kinases, which transmits the stress signal to the Wis1 MEK. We show that the Wis1 MEK is controlled by an additional pathway that is independent of both Mcs4 and the Wak1 MEK kinase. Furthermore, we demonstrate that Mcs4 is required for the correct timing of mitotic initiation by mechanisms both dependent and independent on Sty1, indicating that Mcs4 coordinately controls cell cycle progression with the cellular response to environmental stress.  相似文献   

5.
6.
7.
8.
Protein tyrosine kinases of the Src family are negatively regulated by phosphorylation in the C-terminal tail of the molecule. A different protein tyrosine kinase, Csk, is largely responsible for this regulation. The phosphorylated tail of c-Src engages with the SH2 domain in a conformation that is associated with low kinase activity and which involves stabilization by the SH3 domain. Inducible expression of c-Src in fission yeast is lethal unless Csk is coexpressed. Using this assay we present evidence that Src regulation by C-terminal phosphorylation does not require the myristylation signal or the unique domain at the N-terminus of the Src protein. Mutagenesis of the SH3 and SH2 domains of Csk show that neither are necessary in yeast or in vitro for efficient regulation of Src. Mutation of Tyr416 of Src, a site of autophosphorylation common to most protein tyrosine kinases, abolished the ability of Src to arrest growth of phosphorylate endogenous proteins. Tyr416 had the same effect on a shorter form of Src consisting of the kinase domain only, indicating that the mutation affects a property intrinsic to the catalytic domain. The residual activity of full-length Src mutated at Tyr416 is efficiently repressed by Csk action, suggesting that regulation by C-terminal phosphorylation does not act by preventing phosphorylation at Tyr416.  相似文献   

9.
The activity of the cyclin-dependent kinases (CDKs) that control cell growth and division can be negatively regulated by tyrosine phosphorylation or by the binding of various CDK inhibitors. Whereas regulation by tyrosine phosphorylation is well documented in CDKs that function during mitosis, little is known about its role in the regulation of CDKs that act in the G1 phase of the cell cycle. In contrast, much evidence has accumulated on the regulation of G1 CDKs by CDK inhibitors. The cytokine TGF-beta inhibits growth by causing cell-cycle arrest as a result of increasing the concentration of the Cdk4/6 inhibitor p15(INK4B/MTS2) (refs 3, 4). Here we report that TGF-beta can also cause the inhibition of Cdk4 and Cdk6 by increasing their level of tyrosine phosphorylation. Tyrosine phosphorylation and inactivation of Cdk4/6 in a human mammary epithelial cell line are shown to result from the ability of TGF-beta to repress expression of the CDK tyrosine phosphatase Cdc25A. Repression of Cdc25A and induction of p15 are independent effects mediating the inhibition of Cdk4/6 by TFG-beta.  相似文献   

10.
11.
12.
13.
14.
Progression through the cell cycle is regulated in part by the sequential activation and inactivation of cyclin-dependent kinases (CDKs). Many signals arrest the cell cycle through inhibition of CDKs by CDK inhibitors (CKIs). p27(Kip1) (p27) was first identified as a CKI that binds and inhibits cyclin A/CDK2 and cyclin E/CDK2 complexes in G1. Here we report that p27 has an additional property, the ability to induce a proteolytic activity that cleaves cyclin A, yielding a truncated cyclin A lacking the mitotic destruction box. Other CKIs (p15(Ink4b), p16(Ink4a), p21(Cip1), and p57(Kip2)) do not induce cleavage of cyclin A; other cyclins (cyclin B, D1, and E) are not cleaved by the p27-induced protease activity. The C-terminal half of p27, which is dispensable for its kinase inhibitory activity, is required to induce cleavage. Mechanistically, p27 does not appear to cause cleavage through direct interaction with cyclin/CDK complexes. Instead, it activates a latent protease that, once activated, does not require the continuing presence of p27. Mutation of cyclin A at R70 or R71, residues at or very close to the cleavage site, blocks cleavage. Noncleavable mutants are still recognized by the anaphase-promoting complex/cyclosome pathway responsible for ubiquitin-dependent proteolysis of mitotic cyclins, indicating that the p27-induced cleavage of cyclin A is part of a separate pathway. We refer to this protease as Tsap (pTwenty-seven- activated protease).  相似文献   

15.
Anti-idiotype (anti-Id) antibody can induce tumor dormancy in a murine B lymphoma, BCL1, by its ability to induce cell cycle arrest and apoptosis (negative signaling). In human B lymphoma, there is accumulating evidence that the antitumor effect of anti-Id or several other B cell-reactive antibodies relates to their ability to act as agonists rather than conventional effector antibodies. In this study, we sought to elucidate the role of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors in anti-IgM-induced cell cycle arrest to better understand the mechanisms underlying cancer dormancy. To accomplish this, we have performed in vitro studies with a human lymphoma cell line (Daudi) because its response to anti-Id (or anti-IgM) is similar to that of a BCL1 cell line, more reagents are available, and the results would be particularly pertinent to therapy of human B cell lymphomas. Our results show that cross-linking of membrane IgM on Daudi cells induces an arrest late in G1 and prevents pRb from becoming phosphorylated. The G1 arrest is correlated with an induction of the CDK inhibitor p21 and reduced CDK2 activity, although the level of CDK2 protein was not changed. Coprecipitation of CDK2 with p21 in anti-IgM-treated cells and the unchanged level of cyclin E suggest that p21 is responsible for the reduction of CDK2 activity and therefore blockade of the cell cycle. The induction of p21 was not accompanied by changes in p53 levels. As a result of the G1 block, cyclin A levels sharply declined by 24 h after anti-IgM treatment. There was no evidence for involvement of CDK4 or CDK6 in the blockade. These results provide evidence that membrane IgM cross-linking on Daudi cells induces expression of p21 and a subsequent inhibition of the cyclin E-CDK2 kinase complex resulting in a block to pRb phosphorylation and cell cycle arrest late in G1.  相似文献   

16.
Cdk7 has been shown previously to be able to phosphorylate and activate many different Cdks in vitro. However, conclusive evidence that Cdk7 acts as a Cdk-activating kinase (CAK) in vivo has remained elusive. Adding to the controversy is the fact that in the budding yeast Saccharomyces cerevisiae, CAK activity is provided by the CAK1/Civ1 protein, which is unrelated to Cdk7. Furthermore Kin28, the budding yeast Cdk7 homolog, functions not as a CAK but as the catalytic subunit of TFIIH. Vertebrate Cdk7 is also known to be part of TFIIH. Therefore, in the absence of better genetic evidence, it was proposed that the CAK activity of Cdk7 may be an in vitro artifact. In an attempt to resolve this issue, we cloned the Drosophila cdk7 homolog and created null and temperature-sensitive mutations. Here we demonstrate that cdk7 is necessary for CAK activity in vivo in a multicellular organism. We show that cdk7 activity is required for the activation of both Cdc2/Cyclin A and Cdc2/Cyclin B complexes, and for cell division. These results suggest that there may be a fundamental difference in the way metazoans and budding yeast effect a key modification of Cdks.  相似文献   

17.
There is an increasing interest in identifying potent cancer preventive and therapeutic agents against breast cancer. Silymarin, a flavonoid antioxidant isolated from milk thistle, exerts exceptionally high to complete anticarcinogenic effects in tumorigenesis models of epithelial origin. In this study, we investigated the anticarcinogenic effect of silymarin and associated molecular mechanisms, using human breast carcinoma cells MDA-MB 468. Silymarin treatment resulted in a significantly high to complete inhibition of both anchorage-dependent and anchorage-independent cell growth in a dose- and time-dependent manner. The inhibitory effects of silymarin on cell growth and proliferation were associated with a G1 arrest in cell cycle progression concomitant with an induction of up to 19-fold in the protein expression of cyclin-dependent kinase (CDK) inhibitor Cip1/p21. Following silymarin treatment of cells, an incremental binding of Cip1/p21 with CDK2 and CDK6 paralleled a significant decrease in CDK2-, CDK6-, cyclin D1-, and cyclin E-associated kinase activity with no change in CDK2 and CDK6 expression but a decrease in G1 cyclins D1 and E. Taken together, these results suggest that silymarin may exert a strong anticarcinogenic effect against breast cancer and that this effect possibly involves an induction of Cip1/p21 by silymarin, which inhibits the threshold kinase activities of CDKs and associated cyclins, leading to a G1 arrest in cell cycle progression.  相似文献   

18.
In Saccharomyces cerevisiae, entry into S phase requires the activation of the protein kinase Cdc28p through binding with cyclin Clb5p or Clb6p, as well as the destruction of the cyclin-dependent kinase inhibitor Sic1p. Mutants that are defective in this activation event arrest after START, with unreplicated DNA and multiple, elongated buds. These mutants include cells defective in CDC4, CDC34 or CDC53, as well as cells that have lost all CLB function. Here we describe mutations in another gene, CAK1, that lead to a similar arrest. Cells that are defective in CAK1 are inviable and arrest with a single nucleus and multiple, elongated buds. CAK1 encodes a protein kinase most closely related to the Cdc2p family of protein kinases. Mutations that lead to the production of an inactive kinase that can neither autophosphorylate, nor phosphorylate Cdc28p in vitro are also incapable of rescuing a cell with a deletion of CAK1. These results underscore the importance of the Cak1p protein kinase activity in cell cycle progression.  相似文献   

19.
20.
During early postnatal development, cardiomyocytes, which comprise about 80% of ventricular mass and volume, become phenotypically developed to facilitate their contractile functions and terminally differentiated to grow only in size but not in cell number. These changes are due to the expression of contractile proteins as well as the regulation of intracellular signal transduction proteins. In this study, the expression patterns of several protein kinases involved in various cardiac functions and cell-cycle control were analyzed by Western blotting of ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats. The expression level of cAMP-dependent protein kinase was slightly decreased (20%) over the first year, whereas no change was detected in cGMP-dependent protein kinase I. Calmodulin-dependent protein kinase II, which is involved in Ca2+ uptake into the sarcoplasmic reticulum, was increased as much as ten-fold. To the contrary, the expressions of protein kinase C-alpha and iota declined 77% with age. Cyclin-dependent protein kinases (CDKs) such as CDK1, CDK2, CDK4, and CDK5, which are required for cell-cycle progression, abruptly declined to almost undetectable levels after 10-20 days of age. In contrast, other CDK-related kinases, such as CDK8 or Kkialre, did not change significantly or increased up to 50% with age, respectively. Protein kinases implicated in CDK regulation such as CDK7 and Wee1 were either slightly increased in expression or did not change significantly. All of the proteins that were detected in ventricular extracts were also identified in isolated cardiac myocytes in equivalent amounts and analyzed for their relative expression in ten other adult rat tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号