共查询到20条相似文献,搜索用时 0 毫秒
1.
基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。 相似文献
2.
采用MTS815 Flex Test GT岩石力学试验系统及声发射(AE)三维定位实时监测系统,开展北山深部花岗岩不同应力条件下岩石破坏的声发射特征研究。试验得到北山花岗岩的直接拉伸强度为9.53 MPa,仅为其单轴平均抗压强度的1/17。试验结果表明,在拉伸应力条件下,由于无原生微裂隙闭合过程,声发射事件出现时间较晚并集中出现于破坏阶段;峰值应力后,声发射信号的继续增加说明花岗岩并未立刻破断,而仍具有一定拉伸承载能力。在压缩应力条件下,初期加载阶段即有声发射信号出现并随加载应力增加而持续增长,反映原生裂纹闭合及新生裂纹扩展演化的过程;随着围压增加,花岗岩在峰值应力阶段延性变形特征显著增强,其内部裂隙(损伤)在该阶段渐进式发展,导致声发射事件的集聚量远高于其他阶段;同时,围压增加使北山花岗岩的非线性特征增强,特别是破坏前的显著延性变形特征与其他工程常见花岗岩特性具有明显不同。研究得到北山花岗岩在不同应力状态下的变形特征和声发射特征,为北山花岗岩在不同应力条件下损伤演化机制研究奠定基础。 相似文献
3.
单轴压缩煤岩损伤演化及声发射特性研究 总被引:8,自引:4,他引:8
为建立声发射参数与岩石(煤岩)力学破坏机制的关系,更好地了解受载煤岩体的损伤演化规律,进一步揭示煤岩动力灾害演化过程及灾害时间效应产生机制,利用MTS815岩石力学测试电液伺服试验系统和8CHS PCI–2声发射检测系统,对单轴压缩煤岩的损伤演化及声发射特性进行试验研究,分析单轴压缩煤岩的声发射特性,提出基于“归一化”累积声发射振铃计数的损伤变量,建立基于声发射特性的单轴压缩煤岩损伤模型,得出煤岩的损伤演化曲线和方程。研究表明,声发射信息反映煤岩内部的损伤破坏情况,与其内部原生裂隙的压密及新裂隙的产生、扩展、贯通等演化过程密切相关,煤岩的声发射特征能较好地描述其变形和损伤演化特性。基于声发射特性的单轴压缩煤岩损伤模型是合理的。单轴压缩煤岩损伤演化过程可分为3个阶段:初始损伤阶段、损伤稳定演化和发展阶段、损伤加速发展阶段。煤岩由变形至破坏可视为一逐渐发展过程:由变形、损伤的萌生和演化,直至出现宏观裂纹,再由裂纹扩展到破坏的全过程。 相似文献
4.
单轴压缩条件下砂岩破坏全过程电阻率与声发射响应特征及损伤演化 总被引:2,自引:0,他引:2
为了全面、客观地描述单轴压缩条件下砂岩损伤破坏过程和状态,提出利用电阻率和声发射技术对砂岩岩样单轴压缩全过程进行联合测试的试验方法。针对30个砂岩岩样单轴压缩全过程中的电阻率和声发射响应特征进行试验研究。研究表明,电阻率和声发射的响应信息有很强的规律性和互补性:在压密阶段、弹性变形阶段和塑性变形阶段,电阻率信息对岩样内部裂隙萌生和发展活动的响应更为敏感,而声发射信号较微弱;岩样破裂瞬间,电阻率和声发射都突然升高,二者相比,声发射的同步性更好,敏感程度更高;岩样破坏完成后,电阻率仍有不同程度的变化,最终趋于稳定,而声发射又恢复到较低的水平。同时,推导基于电阻率表征的岩样损伤变量的解析表达,并根据其与声发射表征的损伤变量之间的互补性,定义一综合损伤变量,得到典型岩样的损伤演化方程,提出岩样损伤破坏状态的判别标准和破坏前兆特征。通过理论与实际试验全应力–应变曲线的对比发现,综合损伤变量能够更全面、客观地反映和描述受载岩样的损伤演化过程。 相似文献
5.
高温作用下花岗岩的声发射特征研究 总被引:2,自引:0,他引:2
通过MTS810材料测试系统及AE21C声发射检测仪对山东临沂花岗岩在20 ℃~800 ℃单轴压缩下的声发射特征进行试验研究,分别分析升温过程中花岗岩振铃计数率随时间的变化规律以及加载过程中花岗岩的声发射特征参量与应力–应变之间的关系。研究表明:升温及加载过程中,花岗岩声发射振铃计数率随着温度升高而增大,声发射活动也变得更频繁;其声发射参量在400 ℃~800 ℃高温后与高温下有较大差别,高温后的声发射参量明显低于高温下,岩样内部裂纹较少以致高温后花岗岩的强度等力学指标要优于高温下;各温度段高温下声发射振铃累计数都要高于高温后,尤其在800 ℃时,两者相差超过1倍;800 ℃前花岗岩岩样主要呈劈裂和剪切破坏为主的脆性破坏,未出现强烈的塑性破坏;高温使储存的能量显著增多并加速能量耗散,能量的耗散和弹性能的释放使岩石的强度减小,宏观裂纹增多并最终破坏。 相似文献
6.
采用MTS815岩石力学试验机对北山新场深部花岗岩进行三轴循环加、卸载试验,研究岩石强度参数的演化特征。基于Mohr-Coulomb相关理论推导与分析,探讨岩石发生屈服后的强度变化规律。在分析不同围压条件下岩石全应力–应变曲线的基础上,以塑性剪切应变为塑性参数,建立北山花岗岩黏聚力、内摩擦角和剪胀角随塑性参数变化的数学模型。研究结果表明:(1) 在损伤应力点,岩石塑性剪切应变接近于0,损伤应力可作为北山花岗岩塑性参数的零点,其亦可作为岩石强度参数演化的起点。(2) 在损伤应力点后,岩石黏聚力随塑性参数的增加呈指数函数形式衰减并最终趋近于0;内摩擦角随塑性参数的增加以对数正态函数的形式表现出先增加后减小的趋势,且岩石残余内摩擦角值与起始内摩擦角值接近。(3) 损伤应力后的岩石剪胀行为与峰后剪胀行为相似,剪胀角随着塑性参数和围压的增加而不断减小,且对低围压条件更为敏感。(4) 将建立的模型嵌入到数值模拟工具中,通过模拟岩石三轴压缩试验,可证实模型的准确合理性。 相似文献
7.
利用MTS 815岩石力学测试系统对膏岩进行不同围压下的三轴压缩试验,配合AE系统进行全过程声发射监测,展开了膏岩变形破坏过程的力学特性及声发射特征进行研究,并进一步探讨膏岩变形破坏过程损伤演化规律。试验结果表明:(1)膏岩是一种致密低渗岩石,气体孔隙度在1.30%~3.50%之间;(2)三轴加载条件下,膏岩的力学性质与声发射参数对围压的响应效果强烈,50 MPa围压较5 MPa围压下膏岩强度提高110.67%。高围压下声发射信号表现出明显的“滞后”效应,声发射集中分布区不断向后推移;(3)膏岩的临界围压为20 MPa。低围压下膏岩呈脆性破坏,破坏后形成宏观剪切面;临界围压下呈塑性破坏,破坏后形成共轭Y型剪切;高围压下呈延性破坏,破坏形态为鼓胀破坏;(4)膏岩损伤演化过程可分为初始损伤期、损伤快速发展阶期与损伤平稳期,能够与膏岩变形破坏阶段对应;损伤快速发展期为膏岩内部裂隙发展、贯通的主要阶段。 相似文献
8.
拉伸应力状态下花岗岩声发射特征研究 总被引:1,自引:1,他引:1
利用MTS815 Flex Test GT岩石力学试验系统和PCI-2声发射(AE)三维定位系统,对甘肃北山花岗岩在直接拉伸和间接拉伸试验条件下的强度、变形及其破坏全过程的声发射特征进行研究。试验结果表明:直接拉伸得到的抗拉强度的平均值、最大值和最小值均分别高于间接拉伸,且前者峰值应力时的应变量小于后者,约为后者的6.03%;直接拉伸试验加载开始至40%峰值应力阶段,声发射较为平静,此后声发射计数和能量均开始增加,接近峰值应力时,声发射事件数达到最大;间接拉伸试验整个破坏过程的声发射计数率基本持平,但40%峰值应力前的初期加载阶段的声发射能率高于40%峰值应力后;间接拉伸过程中,试件受压缩应力及加载接触部位屈服破坏的影响,能量释放量高于直接拉伸。 相似文献
9.
岩石材料在受载情况下,发生变形和内部破裂,储存的部分能量以应力波的形式释放出来,产生声发射现象。采用三轴压缩试验和声发射试验,研究玲珑金矿二长花岗岩声发射特征与力学参数之间的关系。结果表明:(1) 岩石试样在三轴试验条件下,其声发射特征基本符合岩石加载破坏过程中的4个阶段,其中压密阶段在围压对岩石材料的压实作用下没有明显体现出来。(2) 通过分析围压对岩石记忆效应的影响得出,在相对低围压水平时,Kaiser效应显著性会随轴向应力水平提高而降低,Felicity效应显著增大;随着围压水平的提高,Kaiser效应显著增大,Felicity效应显著降低。(3) 在声发射法测量地应力过程中采用三轴试验更为适合,三轴试验可消除应力环境不同和高应力水平Kaiser效应模糊所引起的误差,使测量值更接近实际岩体所处的应力状态。(4) 随着围压水平的提高,岩石的抗压强度随之提高,岩石破裂前夕声发射特征参数呈现突发性特征,表现为突然激发出高能量振铃计数率、能量累积迅猛增加,并且伴随没有峰后曲线的岩石突然破裂现象。 相似文献
10.
基于三轴压缩声发射试验的岩石损伤特征研究 总被引:2,自引:1,他引:2
利用MTS815岩石伺服试验系统和AE21C声发射监测仪,对灰岩进行三轴压缩声发射试验,利用声发射参数,分析三轴压缩条件下岩石的损伤演化特征。试验结果表明:(1) 相同试验条件下,检波器置于三轴室内时的声发射振铃计数和能量的最大值分别比置于室外时高27%和32%,表明,声发射检波器置于三轴室内能够接收到更全面、真实的声发射信号。(2) 围压使岩石压密阶段声发射活动降低,同时声发射振铃计数最大值稍滞后于岩样宏观破坏时间,说明围压提高了岩石的剪切强度和峰后承载能力。(3) 建立基于声发射累计振铃计数的岩石三轴压缩损伤演化模型,岩石的损伤演化过程可划分为初始损伤阶段、损伤稳定发展阶段、损伤加速发展阶段和损伤破坏阶段。初始损伤阶段,声发射参数较小;损伤稳定发展阶段,声发射活动明显活跃,振铃计数和能量逐渐增加;损伤加速发展阶段,声发射活动异常活跃,宏观破坏后不久声发射振铃计数和能量达到峰值;损伤破坏阶段,岩石仍具有相当的承载能力,在破坏过程中仍有声发射活动出现。 相似文献
11.
基于花岗岩卸荷试验的损伤变形特征及其强度准则 总被引:1,自引:4,他引:1
对取自大渡河大岗山水电站的花岗岩开展高应力下2种卸荷方案的力学特性试验,并与同围压下的常规三轴压缩试验结果进行对比分析,研究岩石卸荷过程中的破坏机制、力学强度参数损伤劣化效应及其卸荷破坏的强度特性。研究结果表明:(1) 岩石卸荷过程中向卸荷方向回弹变形强烈、扩容显著,脆性破坏特征明显。(2) 卸荷试验中,开始卸荷点处的变形模量较常规三轴压缩试验已发生一定的损伤劣化,其损伤因子与初始围压近似成线性关系,而该点处的泊松比所表现出的损伤劣化效应却不明显。(3) 卸荷过程中,泊松比随着围压的不断卸除,呈现指数关系增长;变形模量变化平缓,但在岩样卸荷屈服破坏点处陡降。(4) 在高应力卸荷条件下,Mogi-Coulomb强度准则能很好地反映其破坏强度特性。(5) 相比较于常规三轴压缩试验,卸荷时的抗剪强度参数c值减小而j 值增大,其变化量与卸荷方式有关。这些结论揭示高应力条件下花岗岩的卸荷力学特性,为西部水利水电工程的开挖、支护设计及其稳定性分析提供了理论参考。 相似文献
12.
北山深部花岗岩弹塑性损伤模型研究 总被引:1,自引:1,他引:1
基于力学特性试验和三维声发射监测技术,研究北山花岗岩在压应力条件下的力学行为特征和损伤演化机制,并构建岩石的力学损伤模型。试验结果表明,在低围压条件下岩石主要发生的是脆性破坏;随围压增大,岩石力学行为逐渐向延性转化,表现出剪胀、塑性变形等非线性行为。结合微裂隙产生和扩展规律,对岩石在外力作用下的损伤演化过程和破坏机制进行分析,认为北山花岗岩的破坏及非线性行为是损伤和塑性变形共同作用的结果。基于这一认识,在热动力学框架下提出北山花岗岩准唯象弹塑性损伤模型。模型引入非关联的塑性流动方程,以反映岩石在压应力作用下体积变形从压缩到膨胀的转化过程。基于已有的损伤理论建立损伤演化方程,并通过在塑性屈服面中引入独立损伤变量,建立塑性和损伤发展的耦合关系。数值模拟和试验数据的对比表明,模型可以很好地描述北山花岗岩在不同应力水平下的损伤演化规律和力学行为,特别是随围压增大岩石力学行为从脆性到延性的转化过程以及岩石峰前塑性硬化和峰后应力软化等行为特征。 相似文献
13.
脆性岩石各向异性损伤和渗透性演化规律研究 总被引:2,自引:4,他引:2
在压应力作用下,脆性岩石的渗透性随着裂纹的扩展而演化。通过试验观察和微观机制分析,提出渗透系数计算方法。在已建立的细观损伤力学模型的基础上,对摩擦准则和加载函数进行改进,采用改进模型模拟Lac du Bonnet花岗岩三轴压缩试验。根据力学模型中得到的损伤变量和裂纹的法向、切向位移,引入连通系数描述裂纹扩展过程中,裂纹逐渐贯通形成渗流通道,采用立方定律作为单个裂纹中渗流方程,利用细观力学定义裂纹半径和等效开度,对各方向裂纹上的渗流速度进行平均化,得到渗透系数张量计算方法。采用此方法对Lac du Bonnet花岗岩现场试验结果进行模拟,比较轴向和侧向渗透系数的不同演化规律,预测不同围压条件下轴向渗透系数的演化规律。分析结果表明,模型的计算值与试验值非常吻合,验证了模型的适用性。 相似文献
14.
利用MTS815 Flex Test GT岩石力学试验系统及声发射(AE)三维定位实时监测系统,对北山花岗岩试样开展静态加载和循环加载两种加载方式的人字形切槽巴西圆盘(CCNBD)试验,旨在研究不同加载方式下北山花岗岩的断裂力学行为及声发射特征。测试结果表明,北山花岗岩在静态加载下的平均断裂韧度值为1.180 MPa·m1/2,循环加载下的平均断裂韧度值为1.153MPa·m1/2,循环加载下岩石的断裂韧度降低了2.3%。通过循环加载试验证实了亚临界裂纹扩展的存在,并发现循环加卸载并不会改变CCNBD试样的破坏模式,试样仍保持脆性特征。结合力学特征曲线和声发射特征,对静态加载及循环加载下CCNBD试样的裂纹扩展过程进行分析,深化对不同加载方式下的CCNBD试样断裂特征的认识。 相似文献
15.
北山花岗岩细观损伤力学本构模型研究 总被引:1,自引:0,他引:1
甘肃北山花岗岩是一种典型的准脆性材料,与裂纹有关的非弹性变形和损伤发展是其材料劣化和结构破坏的基本力学机制。基于均质化方法和热动力学理论,提出模拟北山花岗岩非线性力学行为的损伤–摩擦耦合本构模型。把花岗岩看成是由基质和大量分布的微裂纹构成的非均质材料,并以固体基质和币型微裂纹构成的特征单元体为研究对象。通过均质化方法确定特征单元体的自由能表达式,推导出与非弹性应变和损伤变量相关联的热动力学力,分别采用关联的广义库仑摩擦准则和基于应变能释放率的损伤准则来描述非弹性应变和损伤的演化。通过损伤–摩擦耦合分析进行强度研究,获得岩石强度的解析表达式,并明确损伤抗力函数的基本特征。运用所提出的细观力学损伤模型对北山花岗岩的三轴压缩力学特性进行模拟。数值模拟结果和试验数据具有较好的一致性,可验证模型的准确性,显示多尺度本构模型的突出优点。 相似文献
16.
岩石在荷载作用下的变形破坏实质是能量驱动的渐进损伤演化过程,是裂纹闭合、发育、扩展和贯通的综合表现.从能量耗散角度分析岩石破坏机制能更好地认识其破坏的复杂过程.为探究北山深部花岗岩破裂过程中的强度参数演化和能量耗散规律,对北山预选区深度为550~560 m的花岗岩开展常规三轴力学特性试验和声发射特征试验.基于不同围压下... 相似文献
17.
单轴压缩下含预制孔洞板状花岗岩试样力学响应的试验和数值研究 总被引:1,自引:4,他引:1
利用挪威Iddefjord花岗岩试样加工制备含双侧预制方形孔洞的板状试样,并在Instron液压伺服控制试验机上开展单轴压缩试验,监测试样的应力、应变、声发射信号特征及试样破坏过程。研究发现,随着轴向应力的增大,试样在平行于孔洞竖直方向的位置相继出现劈裂裂纹并逐渐贯通,孔洞周边岩体出现块体弹射、片帮等应变型岩爆特征。试验研究表明,含孔洞花岗岩试样在单轴压缩下总是从孔洞周边的劈裂破坏开始,试样的声发射曲线比完整岩样存在更多的跳跃突变点。在此基础上,利用FLAC3D对室内试验进行数值模拟,通过线弹性模型分析含孔洞岩石材料的应力分布特性,通过应变软化莫尔–库仑准则模拟岩样的破坏过程,监测各计算时步下单元拉伸和剪切破坏特性;发现单轴压缩下含孔洞岩样的塑形破坏单元以拉伸破坏为主,拉伸破坏单元沿孔洞竖向边界贯通形成劈裂破坏面,这和室内试验观测结果是一致的。研究结果在一定程度上揭示了深部硬岩洞室开挖后,在高地应力作用下总是产生平行于洞室开挖边界面的板裂、片帮破坏现象。 相似文献
18.
采用岩石声波、声发射一体化监测装置,系统地研究三轴多级循环荷载作用下盐岩超声波波速与声发射变化特征。结果表明:(1) 岩石的超声波波速和声发射活动与应力状态呈现出良好的一致性。加载阶段,超声波波速上升,声发射活跃,卸载阶段,超声波波速下降,声发射平静,应力级数越高,这一特征越显著。(2) 盐岩的声波、声发射特征与试验围压应力密切相关。围压水平越低,应力循环试验中岩石波速变化率越大,声发射事件数量越多;围压水平越高,岩石超声波波速变化率越小,声发射事件数量越少。五级应力荷载试验中,围压条件为5,10,15,20 MPa时盐岩的声发射事件数量分别为1 026,703,361和206个,显示了“围压致密效应”。(3) 分别应用卸载模量、裂隙密度和Felicity比表征盐岩的损伤演化。结论认为:盐岩的裂隙密度和Felicity比变化与岩体承载破坏特征较为一致,可以较好地反映盐岩的损伤破裂过程,而利用卸载模量表征盐岩损伤误差较大,这是由于盐岩特殊的黏塑性变形特征造成的。 相似文献
19.
利用自主研发的煤岩双面剪切细观开裂演化过程试验装置,通过开展不同法向应力条件下的剪切试验,借助声发射技术及图像处理技术,对细观开裂扩展过程、细观开裂扩展空间分布进行深入探究。研究结果表明:对于压剪应力条件下的双面剪切试验,加载过程中的大部分阶段,试件表面损伤不明显,表面裂纹出现在峰值剪应力之前;当剪应力达到峰值前,Hit率有一个急剧增加的过程,说明砂岩内部已有裂纹产生,而试件表面并无明显变化,一段时间后才在表面观测到细小裂纹,推测裂纹由内向外扩展;试件发生宏观破坏后,左右两侧裂纹呈八字形或梯形分布,由于竖向剪切力引起的岩体内部剪切破坏占主导作用且砂岩内部晶粒间存在一定的几何物理性质差异,主裂纹基本沿预定剪切面扩展的同时表现出开裂扩展的不规则性;裂纹多在石英、长石等矿物颗粒的边缘即砂岩中相对薄弱的环节产生,随着应力水平的增加,裂纹也会穿过矿物颗粒形成穿晶破裂,这种现象多在石英颗粒中出现,这与其特有的微结构特征有关。 相似文献
20.
基于不同温度及应力状态下的蠕变特性试验,结合三维声发射实时监测信息,开展北山花岗岩的蠕变变形特性以及加载条件(温度、围压和应力状态)对其蠕变破坏过程的影响研究。试验结果表明,北山花岗岩的蠕变破坏包括初始蠕变阶段(瞬态蠕变)、稳定蠕变阶段和加速蠕变阶段三个阶段,在加速蠕变过程中裂纹迅速扩展和积聚是导致岩石最终破坏的主要原因。蠕变试验过程中,声发射累计数和岩石蠕变体积应变的演化趋势整体上具有一致性,但声发射信号对岩石变形破坏的敏感性更强。对试验数据综合对比分析显示,花岗岩蠕变破坏变形受围压的影响显著,围压越高,岩石蠕变破坏前所能承受的变形越大。温度和应力水平对蠕变破坏变形影响并不明显,但可以对蠕变速率造成影响,进而改变岩石的蠕变破坏时间。根据试验结果,在围压2,10,30 MPa条件下,北山花岗岩的蠕变破坏轴向应变平均值分别为0.34%,0.54%和0.71%。 相似文献