首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
曹霆  王卫星  杨楠  高婷  王峰萍 《红外与激光工程》2017,46(2):206006-0206006(6)
针对传统的路面检测方法无法直接获得路面的深度信息,设计了一种基于三维激光扫描技术的路面断板深度检测方法。该方法首先通过三维激光扫描仪得到路面点云数据,其次将路面断板数据沿水平方向分为若干切片,然后对每一断板切片上下平面分别进行拟合,最终根据上下平面之间的距离确定断板的深度。根据实际工程需要,提出了一种基于动态阈值的平面拟合迭代算法,不仅可以有效地识别并去除断板点云数据中的无效点,而且可以在点云数据三个方向都存在误差的情况下实现平面计算。实验结果表明,该方法不仅能得到整个路面断板的深度信息,还能反映出断板深度沿水平方向的变化趋势。  相似文献   

2.
为提高Shack-Hartmann(S-H)波前传感器的光斑质心探测精度,在分析质心探测误差来源的基础上,提出基于模板匹配的探测窗口选取方法和基于单个光斑的自适应阈值选取方法,将这两种方法与加权质心算法相结合求取质心,提高了质心探测精度。与固定阈值和传统质心算法相比较,当SNR 大于3 时,质心探测精度平均提高了约40%。将文中的方法应用于可见光波段的商品S-H 波前传感器,实验表明:文中方法得到的质心偏离度由传统方法的0.83 pixel 的最大值减小至0.15 pixel。该工作有重要的应用价值。  相似文献   

3.
如何快速准确计算透镜焦面上的光斑质心坐标是大口径平面光学元件面形检测系统的核心问题之一,直接决定面形检测的精度和重复性。定义一个半径为r的探测窗口,根据到中心距离建立一维卷积模板,在光斑覆盖区域中寻找窗口内能量和局部最大的位置,确定光斑有效区域;再使用传统重心法计算有效区域质心;最后应用3准则进行误差处理。实验结果表明,该算法检测精度为0.1像素,各指标比传统阈值加权质心定位法提高约1 倍,面形测量的面形相似性和PV 比阈值加权法更贴近干涉仪检测结果。目前,通过长时间的实验验证与改进,已成功运用于实际项目中。  相似文献   

4.
查林彬  时东锋  黄见  王英俭 《红外与激光工程》2021,50(12):20211060-1-20211060-7
针对快速实时定位运动物体的需求,提出了一种使用几何矩探测的单像素快速定位运动物体的方法。该方法的核心是通过探测运动物体的质心实现快速定位运动物体。根据几何矩性质构造3个几何矩照明光,并照射运动物体,利用单像素探测器收集运动物体与调制光相互作用后的反射或透射光的强度值。根据单像素成像理论,探测强度值与物体的零阶和一阶几何矩值相对应。标识物体位置的质心参数可由物体的零阶和一阶几何矩值获取。结合数字微镜调制器(DMD)和时间抖动的方法产生几何矩照明光,利用所提方法在不成像的前提下分别实现了帧频约为500 fps和1 000 fps运动物体定位。所提方法获取质心的误差在1.63个像素以内,均方误差为0.118 3个像素。文中所提方法为使用单像素探测器实现快速追踪运动物体提供了一种新思路。  相似文献   

5.
王杰飞  刘洁瑜  赵晗  沈强 《激光技术》2015,39(4):476-479
为了满足平台漂移测量系统中平台漂移角速度高精度测量的要求,基于傅里叶级数,提出了一种改进的激光光斑中心高斯拟合定位方法。该方法在简化高斯拟合模型的同时保证了相对较高的激光光斑中心定位精度。结果表明,改进的高斯定位算法中心定位精度为0.01pixel,明显优于传统质心法和带阈值质心法的0.1pixel。改进后的算法具有较好的算法稳定性。  相似文献   

6.
为了在复杂的运动模糊情况下快速提取光条中心,提出了一种新的结构光光条中心快速提取算法。通过分析线结构光运动成像模糊的原因和图像中光条截面的灰度值分布规律,设计了基于理论光条成像宽度的P-tile阈值分割算法,以解决运动模糊情况下光条成像宽度不一、亮度无规则变化引起的光条区域提取困难问题。根据光条图像的特点,通过改进的区域生长算法提高光条定位速度,根据光条截面的灰度值分布特点提取结构光光条中心。实验结果表明,在运动模糊情况下,改进的P-tile阈值分割算法具有精度高、速度快的优点,相比极值法、大津法能更好地分割出有效光条区域,在结构光工业高速测量领域具有实用价值。  相似文献   

7.
设计了一种基于CCD图像传感器的太阳定位技术,利用CCD摄像头实时的采集太阳的图像,通过USB接口与计算机相连,提取连续图像帧,采用维纳滤波、迭代阈值法、边缘检测算子、改进的最小二乘圆拟合算法等,对太阳图像进行了轮廓提取和质心位置计算,太阳检测定位精度达到0.001°,从而达到更高精度、更快速度的太阳质心定位的目的。为后续驱动伺服电机调整高度角和方位角,最大限度地获取太阳能做了更加充分的准备。最后实验仿真成功。  相似文献   

8.
现有的自动破损检测忽略了深度信息,仅使用图像2D信息,难以准确检测复杂环境下的管道保温层破损。为解决该问题,针对轨道式机器人巡检场景,提出一种基于线结构光和YOLOv5的管道保温层破损检测方法。将线结构光加入视频采集装置中,对激光域进行预分割后,采用自适应阈值方法提取激光中心线,结合线结构光测量深度原理,进行主动式测距。经图像拼接由视频自动生成RGB-D图像,解决了RGB图像与深度信息配准问题。最后结合中层特征融合的YOLOv5算法进行RGB-D破损检测,对凸起和凹陷两类破损进行分类检测。实验结果表明,所提方法可以从轨道式机器人采集视频中获取RGB-D信息,检测的平均精度均值可达85.1%,能够实现对热力管道保温层破损的有效准确识别。  相似文献   

9.
结构光条纹中心线的鲁棒提取   总被引:2,自引:0,他引:2  
结构光条纹中心位置的精确检测是影响结构光系统精度的关键问题之一。提出一种多步骤的鲁棒性提取方法,首先采用自适应阈值法剔除噪声点,然后采用光条膨胀和细化方法,得到初始的中心点,并利用此初始中心点的梯度,得到光条法线方向。最后,在法线方向求取灰度重心,得到光条亚像素中心线。该方法应用在基于线结构光检测原理的隧道轮廓变形监测装置中,实验结果表明,能准确提取光条纹中心。  相似文献   

10.
基于光纤光栅的沥青路面状态的实时监测   总被引:4,自引:4,他引:0  
为了给沥青路面结构响应监测找到科学有效的测 试手段,本文进行了沥青路面响应光纤Bragg光栅(FBG)实时监测 的研究。应用单轴压缩试验对采用的FBG传感器进行标定,得到了标定方程。基于提 出的沥青路面 FBG传感器埋设方法,在沥青路面成功埋设了FBG传感器。将静载监测结果与BISAR 3.0程序 计算结果进 行了比较。对不同轴重、不同汽车行驶速度及不同温度条件下的沥青路面结构动力响应进行 了实时监测。结果 表明,提出的沥青路面FBG传感器埋设方案可使传感器的成活率达到87%;静载实测结果与 计算结果较为接近,FBG监测结果有效且能准确反映沥青路面各工况下的应变时程;当车速 降低8km/h时,路面应变响应降低达100με以上;而路面温度增 长8℃,路面的竖向变形增长了近200με。  相似文献   

11.
为了研究多层单道电弧增材表面3-D成形特征,采用激光视觉传感系统采集电弧增材制造表面条纹图像。提出基于边界约束条件的感兴趣区域(ROI)提取法对焊缝特征曲线进行定位,获取ROI的激光条纹像素坐标。进行了理论分析和实验验证,得到电弧增材表面的3-D离散点数据,采用Delaunay三角剖分对离散点拟合形成3-D实体表面。结果表明,锯齿靶标的线性标定方法,3-D重构精度在0.2mm以内; 基于边界约束条件的ROI提取方法能准确定位电弧增材上表面和侧表面的条纹特征曲线。这一结果对电弧增材表面的3-D成形检测是有帮助的。  相似文献   

12.
激光雷达扫描数据的快速三角剖分及局部优化   总被引:1,自引:1,他引:0  
为了研究维激光雷达测量所得点云数据的三角构网,根据激光雷达逐行扫描特点,采用了改进的三角剖分方法,对点云数据进行不规则三角网格划分.基于激光雷达点云数据位置拓扑信息,分析了相邻扫描线之间数据点的相对位置关系,利用几何关系进行初步配对构网;并结合经典法则对初始网格进行局部优化,得到最终三角网;同时,对优化前后的三角网,提出一种新的评价法则进行剖分效果对比.结果表明,充分利用点云特点进行三角剖分可改进算法.所提出的剖分效果评价法可帮助检验构网质量.  相似文献   

13.
洪梓铭  陈昆  荆根强  艾青松 《红外与激光工程》2018,47(6):617007-0617007(8)
对路面车辙线激光实时检测方法进行了研究,在自然驾驶条件下,采用激光器向路面连续发射线激光,通过高分辨率相机动态获取路面车辙激光线的序列图像,并对路面车辙进行实时检测。针对路面复杂背景强干扰条件下的车辙激光线难以提取问题,对路面车辙激光线图像进行了特征分析,给出了非负特征测度定义及非负强度计算公式,提出了基于非负特征和峰值连续性的路面车辙激光线提取方法。该方法不再采用图像处理常规方法,而是利用峰值连续性快速跟踪路面车辙激光线的显著脊点与非显著脊点,实现路面复杂背景车辙激光线的快速和精确提取。在不封路、不停车、不阻碍交通的自然运行条件下,进行了大量的路面车辙检测实验,实验结果验证了文中提取方法的有效性和准确性,解决了自然条件下路面车辙激光线的快速和精确提取问题,为路面车辙的自动检测及路面质量评价提供技术支撑。  相似文献   

14.
提出了一种基于激光视觉的焊缝实时检测技术,旨在提高焊缝检测的速度和精度。在实际的焊接过程中,由于大量噪声的干扰,焊接图像的采集一直是一个复杂的过程。 本文首先建立基于激光视觉的检测系统,以获得激光条纹的原始图像。在此基础上,将原始激光条纹图像灰度化,并提出一种改进的快速中值滤波算法,在去除图像中椒盐噪声的同时,缩短了程序运行时间。并通过Otsu阈值分割获得激光条纹的二值图像,提取感兴趣的激光条纹区域。接着结合方向模板法和脊线跟踪法提取激光条纹中心线,最后采用亚像素级角点法提取焊缝的特征点。 实验证明,本文提出的方法有效地克服了焊接环境的影响,不仅缩短了焊缝特征点检测的时间,而且具有较高的检测精度,符合实际焊接要求。  相似文献   

15.
刘巍  张洋  高鹏  杨帆  兰志广  李晓东  贾振元  高航 《红外与激光工程》2017,46(10):1017010-1017010(8)
为实现大型航空零件三维测量过程中激光光条的快速高精度提取,提出了一种结合分层处理的激光光条亚像素中心提取方法。首先,根据序列图像的结构不变性将高分辨率图像压缩为低分辨图像。接着,通过二次拟合求解低分辨率图像中激光光条中心的法线斜率。然后,将低分辨图像求得的法线斜率还原到高分辨激光光条图像中。进而通过灰度重心判断准则,快速计算激光光条的亚像素中心。最后,采用所提出的方法分别在实验室和大型航空零件装配测试台上进行了复合材料标准样件和复杂零件的三维形貌测量。实验结果表明:该方法的单激光光条重建误差为0.269 mm,三维形面的重建误差为0.268 mm。该方法可有效提高工程零件快速测量过程中激光光条提取精度,满足大型航空零件现场测量的工程要求。  相似文献   

16.
一种激光三维传感中提高深度分辨率的方法   总被引:4,自引:0,他引:4  
李万松  苏显渝  李继陶 《中国激光》1996,23(12):1081-1086
提出了一种在用激光片光做光源的三维传感中提高深度分辨率的方法.在牺牲少量横向分辨率的情况下,利用激光片光在物面上几个相邻区域产生的部分退相关的光强分布进行多帧平均.从而部分抑制激光散斑的影响,提高深度分辨率。实验结果表明,在横向分辨率下降约20%的条件下,深度分辨率提高了近一倍.  相似文献   

17.
为了解决地磅在煤矸石装载量称重中效率低、成本高等问题, 提出了一种基于激光三角法的非接触式煤矸石装载体积测量方法。首先通过CCD相机实时采集激光器投射在满载煤矸石的运动车厢表面的激光条纹信息, 并采用中值滤波和基于Otsu算法的阈值分割法对图像进行预处理, 实现图像有效区域的提取; 然后使用基于骨架的灰度重心法提取激光条纹的中心线; 最后采用黎曼积分计算车辆的煤矸石装载量。结果表明, 此系统结果误差控制在4%以内, 符合系统运行要求, 证实了该测量方法的可行性与实用性。该研究为复杂环境下公路运输管理的装载量测量提供了参考。  相似文献   

18.
纪运景  杜思月  宋旸  李振华 《红外与激光工程》2022,51(2):20210894-1-20210894-9
非接触式三维视觉测量广泛应用在工业制造质量检测中。针对工业金属零部件检测的应用场景,提出了一种基于线结构光旋转扫描和光条纹修复的三维视觉测量方案。首先,通过基于线结构光投影的计算机视觉技术,设计了线结构光旋转扫描视觉子系统,并对工业相机、线结构光平面和旋转扫描中心轴进行标定;然后,针对采集到的光条纹图像存在低灰度区域缺失数据的问题,提出了基于缺失区域自适应灰度增强的光条纹中心线提取算法,有效修复了被测零部件的线结构光投影条纹;同时,利用文中提出的线结构光三维视觉测量方案,通过重建标准球棒的表面点云计算两球直径和球间距来评价测量系统的精度,测量系统精度优于0.06 mm;最后,进行金属轮毂外轮廓形貌测量,通过重复性实验计算轮毂外轮廓最大半径,验证重复性误差优于0.03%。实验结果表明:该方法可以无损伤、高效率、高精度地实现工业金属零部件三维测量,弥补了接触式三维测量方法的缺陷。  相似文献   

19.
一种基于极线约束的激光条纹匹配算法   总被引:3,自引:0,他引:3       下载免费PDF全文
提出了一种基于极线约束的激光条纹匹配算法.先通过双CCD摄像机摄取左右两幅图像,然后对图像进行预处理.处理之后的两幅图像是在不同视角下摄取的两条单像素宽的激光条纹,在极线约束和连续性约束的理论基础上,提出了一种直线和曲线求交的匹配方法,从而实现了激光条纹的快速精确匹配和激光扫描线的三维重建.  相似文献   

20.
激光焦点位置的检测与控制是激光切割系统中的关键技术之一.在介绍了国内外现有检测方法的基础上,提出一种基于CCD的激光切割焦点位置控制系统.该系统采用激光三角测量法原理,并以CCD成像系统配合数字图像处理技术.实现对激光切割焦点位置的精确测量和控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号