首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
通过控制应变水平,采用热模拟准静态压缩和霍普金森压杆高应变速率压缩相结合的技术,实现了锆合金不同应变速率条件下的塑性变形。结果表明:锆合金准静态压缩和高应变速率压缩的主要区别在于变形后期。准静态压缩时,位错在晶粒内部塞积成为锆合金塑性变形的主要方式,导致基体晶粒内部累积取向差逐渐增加;而高应变速率压缩时,剪切带成为锆合金塑性变形的主要方式。剪切带塑性变形方式的出现,部分协调了锆合金的塑性变形,导致基体晶粒内部累积取向差较低。  相似文献   

2.
研究了U-5.7Nb合金在应变速率为8000s~(-1)下绝热剪切带的形成及其演化机制。通过控制应变速率,采用应变限位环的方法实现了U-5.7Nb合金在不同应变下的动态变形。结果表明:随着应变的增加,U-5.7Nb合金动载下会形成两种类型的绝热剪切带:形变带和转变带。形变带形成所需的临界应变值接近于0.33,而转变带形成所需的临界应变值接近于0.39。显微组织观察表明形变带内部由严重拉长的畸变组织组成,而转变带内部主要由细小等轴的晶粒组成。基于不同应变下绝热剪切带的表征,预测了U-5.7Nb合金动载下塑性变形及其断裂过程。  相似文献   

3.
采用金相(OM)、电子背散射衍射(EBSD)以及拉伸实验等技术手段研究了不同变形量条件下Hastelloy C-276合金薄板的组织演化特征和力学性能。结果表明:变形量小于14%时,位错优先在晶界附近塞积,并产生局部应变集中;变形量在14%~30%范围内,孪晶界附近及晶粒内部产生大量位错,位错滑移引起晶粒内部应变集中增强;变形量由0%增加至30%,晶界应变集中程度因子先增大后减小,变形量为14%时晶界应变集中程度因子最大。利用Ludwigson模型回归拟合了不同变形条件下的真应力-真应变曲线,随变形量的增加,材料的加工硬化程度提高,加工硬化速率减小,发生单滑移向多滑移转变的临界应变减小。  相似文献   

4.
利用分子动力学方法对具有特征晶体取向的Cu/Ti层状复合体在单轴拉伸和平面应变压缩2种变形过程中的微观力学行为进行了研究。模拟结果显示,拉伸载荷作用下,位错优先在Cu/Ti异质界面处形核并沿着{111}晶面向Cu层内部运动,变形机制为层内约束滑移。随着位错的增殖,位错之间发生交互作用并在Cu层内形成插入型层错和形变孪晶。而在此形变过程中Ti层内未发现塑性变形系统的启动。随着载荷继续增大,Cu/Ti界面处的应力集中导致复合体发生断裂。在平面应变压缩变形的模拟中,发现Cu/Ti界面处的应力集中促使Ti层中形成剪切带,剪切带内部及其近邻区域仅存在少量位错。随着外加应变增大,多种变形机制的共同作用引起晶粒旋转,同时复合体内的原子无序度增加。此外,不同初始取向和不同应变速率下的Cu/Ti复合体的微观塑性变形机制和力学性能存在显著差异。研究结果揭示了包含有密排六方金属层状复合材料的微观形变机制。  相似文献   

5.
高应变速率对纯钛塑性变形的影响   总被引:1,自引:0,他引:1  
利用动态塑性变形(DPD)和准静态压缩变形(QSC)技术对纯钛圆柱样品进行对比压缩试验,研究了不同应变速率下纯钛形变孪晶和微结构演变。结果发现:2种变形方式的变形机制相似,低应变时以形变孪生为主,孪生饱和后转变为位错滑移主导;高应变速率促进了形变孪晶的产生,激发{4211}压缩孪晶的形成,同时使变形机制转变临界应变提前至0.2;纯钛在高应变速率和高应变(ε≥0.6)下出现绝热剪切带(ASB)。  相似文献   

6.
利用Gleeble-3800 型热模拟试验机对铸态TiAl-3Ta-x(Cr, W)合金进行了等温热压缩试验,研究了该合金在1150~1300 ℃及 0.1~1 s~(-1)应变速率下的高温变形后的开裂机理。结果表明:铸态合金表面开裂主要以 45°剪切开裂和纵向自由表面开裂为主,但起裂位置不同;合金的热变形损伤以及开裂行为对热加工参数极为敏感,且其开裂程度随着变形温度的降低、应变速率的增大以及变形量的增加而变化。合金在高温高应变速率下热变形,易在晶界附近形成高密度位错、变形位错与滑移带等微缺陷,并在进一步变形中形成微裂纹。微裂纹沿着β晶界、α_2/γ片层内、相邻晶粒之间、晶界与晶内等位置形核。  相似文献   

7.
利用嵌入原子势的分子动力学模拟,研究了应变速率对含空洞的镁孪晶界面塑性变形机制的影响。结果表明,塑性变形的主要形式包括不全位错、滑移带和堆垛层错;应变速率不会改变试样的杨氏模量,应变速率愈大屈服应力愈大;随着应变速率增大,位错和滑移带的数量增加,堆垛层错的数目先增加后减小,位错运动自由行程的平均长度减小;随着变形进行,位错源不断产生新位错,导致位错密度提高;高应变速率时,晶界处容易形成应力集中,并会有微裂纹产生。  相似文献   

8.
通过分子动力学方法分别在2×108~1×1010s-1的不同应变率和10~1200 K的不同温度下进行拉伸试验,并研究纳米CoCrCuFeNi高熵合金的实时变形行为。结果表明,在高温和低应变速率下的主要变形机制是晶界滑移。随着温度的降低和应变速率的增加,位错滑移取代晶界滑移来控制塑性变形,进而提高合金的强度。此外,为进一步研究晶界对力学行为的影响,对具有不同晶粒尺寸的合金进行模拟。结果发现,当晶粒尺寸过小时,纳米高熵合金的强度随着晶粒尺寸的增加而增加,表现出反Hall-Petch关系。  相似文献   

9.
对钛合金体育器械进行了超塑性变形行为研究,分析了不同变形温度和应变速率下合金的断后伸长率、显微组织的变化规律,并分析了超塑性变形机理。结果表明,变形温度的升高或应变速率的降低可使得试验合金的断后伸长率增加,不同温度和应变速率下合金的断后伸长率都超过了100%;随着变形温度的升高,合金中α相的数量逐渐减少,形态也逐渐从沿变形应力方向拉长的长条状向短棒状或者等轴状转变;随着应变速率的降低,合金中α相的尺寸逐渐增大,且β晶粒逐渐从沿应力方向拉长状转变为等轴状,β相小角度晶界数量也呈现逐渐减少的趋势;试验合金超塑性变形的主要机制为位错运动,而少量再结晶晶粒的产生并不是超塑性的主要机制。  相似文献   

10.
讨论了层错能、应变速率和变形温度等因素在塑性变形制备超细晶/纳米晶材料的变形过程中,对变形机制与晶粒细化机制的影响.研究表明,随着层错能的降低,晶粒的变形机制会由位错滑移向机械孪生转变,有利于晶粒的细化.应变速率的增加与变形温度的降低有利于抑制位错动态回复、增加流变应力,促使晶粒进一步细化.  相似文献   

11.
研究锆合金在应变速率1000s-1动态压缩条件下的显微组织演化规律。基于相同应变速率下多次撞击的方法实现锆合金动态压缩下4个不同的应变水平。在不同的应变水平下,应力—应变曲线具有明显的应变硬化效应,几乎观察不到明显的热软化效应。标定的晶粒边界图像表明,在不同的应变水平下,在变形组织内均可观察到大量的小角晶界,同时,小角晶界的数量和密度随着应变的增加而增多。除了在晶粒边界图像中观察到的小角晶界和大角晶界外,在不同的应变水平下还可观察到孪晶界。孪晶界的类型主要包括{10 1 2}、{11 2 1}拉伸孪晶和{11 2 2}压缩孪晶,且大多数孪晶界为{10 1 2}拉伸孪晶。随着应变水平的增加,变形组织中孪晶界的密度变化不明显。基于不同应变水平下变形组织的表征,提出了动态载荷下锆合金变形和演化过程。显微硬度测试表明,撞击试样的硬度随着应变的增加而逐渐增大,这主要与位错塞积引起的应变硬化有关。  相似文献   

12.
The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s?1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s?1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s?1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s?1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress–strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.  相似文献   

13.
通过Gleeble-1500、分离式Hopkinson压杆、金相、扫描和透射电镜探究了Al-Mg-Zn合金准静态及动态冲击过程中的力学性能和组织演化。Al-Mg-Zn合金在准静态下表现为整体应变硬化效应。合金在1300s-1~3800s-1对应变率敏感,在4800s-1时几乎无应变率敏感性。合金晶粒随应变率变化发生不同程度的变形,且随着应变率的提高,晶粒变形不均匀性加重;析出相粒子形态、密度、尺寸等在4800s-1动态冲击前后发生明显变化。  相似文献   

14.
利用分离式Hopkinson动态压缩装置对添加0.03%Y2O3(质量分数, 下同)的细晶93W-4.9Ni-2.1Fe合金试样进行动态力学性能测试,观察分析了动态压缩后合金试样的显微组织。结果表明:在应变速率为1900 s-1下,合金沿着与冲击方向成45o的方向形成了明显的绝热剪切带,宽度10~25 μm。说明该合金对局部绝热剪切的敏感性大大提高且能在相对较低的应变速率下发生绝热剪切。同时位于剪切带中心区域的钨颗粒沿着其扩展方向被剧烈拉长成纤维状,表现出塑性流动局域失稳的特征  相似文献   

15.
Compression tests of 7050 aluminum alloy have been conducted at different temperatures (340, 380, 420, and 460 °C) and different strain rates of 0.1, 1, 10, and 100 s?1. The microstructure characteristics of the alloy after deformation are investigated using OM, electron backscatter diffraction (EBSD) technique and TEM. Results show that the volume fraction of recrystallized grains and the average misorientation angle increase with the increase of deformation temperature with the strain rate of 0.1 s?1. When the 7050 aluminum alloys were deformed at 460 °C, the volume fraction of recrystallized grains and average misorientation angle decrease with increasing strain rate. The primary softening mechanism of the 7050 aluminum alloy deformed at 340, 380, and 420 °C with the strain rate of 0.1 s?1 is dynamic recovery. Dynamic recrystallization is the main softening mechanism of the alloy deformed at 460 °C and different strain rates. The softening mechanism of the alloy is not sensitive to strain rate.  相似文献   

16.
B. Zhang  V.P.W. Shim 《Acta Materialia》2010,58(20):6810-6827
The microstructure of polycrystalline oxygen-free high conductivity copper subjected to severe uniaxial single compression at liquid nitrogen temperature and strain rates ranging from 10?2 to 105 s?1 is characterized using transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. A difference in strain rate leads to a change in the density, character and arrangement of dislocations, as well as the size and configuration of dislocations cells/(sub)grains in the deformed sample. A threshold strain rate of 103 s?1 is identified for the formation of localized deformation bands, which characterizes heterogeneity of deformation at high strain rates. These bands are composed of grains that are significantly smaller than those outside them, as well as those obtained at strain rates lower than 103 s?1. Under particular conditions, grains as small as several nanometers can be generated in the vicinity of these bands, through the activation of rotational dynamic recrystallization. Amorphization is identified as a deformation mechanism in structures consisting of grains smaller than ~13 nm, and this offers an explanation for the “inverse Hall–Petch effect”. A model that illustrates the initiation and propagation of an amorphous phase during deformation is proposed. Deformed samples exhibit the tendency of an increase in strength with the value of the Zener–Hollomon parameter, which captures strain rate and temperature rise during deformation. This study suggests that a strain rate in the order of 102 s?1 should be adopted in severe plastic deformation techniques to produce nanometer-sized grains.  相似文献   

17.
The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that under quasi-static mechanical loading in compression with strain rate of 1.0 × 10^-3 s^-1. The quasi-static-compressed sample exhibited equiaxed dislocation cells, which were different from the elongated and incomplete dislocation cells for the alloy undergoing dynamic compression. The high strain-rate compression also induced the formation of localized shear bands in which the recrystallizations characterized as fine equiaxed grains were observed. The microstructural evolutions under both quasi-static and dynamic compressions are rationalized in terms of the dislocation cell model combined with the dislocation kinetics, in addition to the adiabatic temperature rise in shear bands at high strain rate.  相似文献   

18.
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator. The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%. The microstructures during the deformation process were characterized. The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed. The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process. The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress. The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate. At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.  相似文献   

19.
H.E. Vatne  R. Shahani  E. Nes 《Acta Materialia》1996,44(11):4447-4462
The cube orientation is usually found to be the strongest recrystallization texture component in annealed aluminium. The purpose of the present work was to obtain a better understanding of the cube orientation, both with respect to the behaviour of cube-oriented grains during deformation and the formation of recrystallized cube grains. Extensive use was made of the EBSP technique to characterize samples of a hot deformed AlMgMn alloy and plane strain compression tests were used to simulate hot rolling under a wide range of conditions of strain, strain rate and temperature. The investigations included: (i) the stability of cube-oriented grains during deformation, (ii) characterization of cube-oriented regions in the as-deformed state and (iii) nucleation of recrystallized cube grains. The work has demonstrated that cube-oriented grains present in the material prior to deformation remain orientation metastable during deformation and are deformed to bands. These cube bands have a unique subgrain size distribution with a long tail of large subgrains, making them very potent as nucleation sites for recrystallized grains. Nucleation of recrystallized cube grains takes place preferentially from those bands which are surrounded by the S deformation texture component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号