共查询到19条相似文献,搜索用时 62 毫秒
1.
针对目前分数阶增强只能实现细节增强,不能有效改善图像亮度及对比度问题,提出一种融合伽马变换及分数阶的低照度图像增强算法,对不同亮度的图像进行实验,以平均灰度、平均梯度、熵值和标准差为准则验证了算法的有效性.实验结果表明,该算法考虑了原始图像的亮度信息,使其拥有较好稳定性,受原始图像影响较小;算法能有效改善图像的亮度、对... 相似文献
2.
为解决目前自然场景文本识别系统文字识别率较低的问题,从识别图像的质量角度分析,发现用相机拍摄的带有液晶屏幕的图像,易受到光照或屏幕本身显示问题影响,成像质量低,难以辨别屏幕内信息。传统的解决方法如使用retinex算法进行图像增强时,由于retinex算法本身的局限性,对于光照不均的图像,会出现光晕现象。针对此问题,本文提出基于同态滤波的去光晕retinex算法来进行光照的校正,首先使用改进的同态滤波算法对图像进行不同程度的滤波处理,校正光照,处理后图像再使用改进的retinex算法进行图像增强,则可以避免光晕现象。实验结果表明,本文方法可以有效提高低照度液晶屏幕图像的视觉效果,优于传统的retinex算法,无光晕现象产生,进而提高自然场景文本识别系统的识别准确率。 相似文献
4.
该文以深度学习为基础,以增强低照度图像为背景,对图像处理技术展开了研究.在对已有的比较流行的增强技术的研究基础上,对一些步骤进行改善,提出了改进的RetinexNet算法.传统的Retinex算法在处理单张图像时比较好用,但是运算速度比较慢,没办法批量快速处理图像.在对RetinexNet改进之后,该算法能对低照度图像... 相似文献
5.
在低照度环境下采集的图像,由于光照的不均匀性,存在能见度差、对比度低和颜色失真等问题.现有的大多数低照度图像增强方法存在过增强或欠增强的现象,影响视觉感知和后续目标检测任务.针对上述问题,提出一种基于照度图引导的低照度图像增强网络.首先根据低照度图像的灰度分布特点构造对应的照度图,度量低照度图像不同区域块的明暗程度;然后利用照度图作为网络增强的引导图,与低照度图像一起送入图像增强网络来获得增强后的图像.为了解决训练数据不足的问题,提出一种基于内循环和概率旋转的数据增强方法来扩充训练数据样本的数量和多样性;同时,针对目前图像增强方法中普遍存在照度不均匀的问题,基于直方图匹配的思想构建一种直方图损失函数,约束并指导网络的训练.在合成数据集LOL和真实图像上的实验结果表明,所提网络在低照度图像增强方面获得了更好的主观视觉效果;与经典的RetinexNet方法相比,所提方法在PSNR和SSIM客观定量指标上分别提高了7.905 dB和0.328;该网络对后续目标检测任务的检测率可提高10.17%~17.19%. 相似文献
6.
在低照度条件下拍摄的图像具有对比度低,亮度低,细节缺失等质量缺陷,给图像处理带来困难。提出一种改进零参考深度曲线低照度图像增强算法,通过在空间一致性损失函数中引入与卷积核大小相关参数,统一了不同尺寸图像的增强效果;将颜色不变损失、照明平滑损失函数与输入图像类型关联,使其增强效果的峰值信噪比提高17.75%,对比度提高26.75%;通过使用对称式卷积结构,解决原算法计算量大的问题;通过使用MobileNetV2轻量化网络对零参考深度网络(Zero-DCE)进行了优化,减少网络模型计算复杂度的同时保证模型较好的增强效果。 相似文献
7.
针对低照度图像具有低对比度、强噪声等问题,提出了一种自适应的低照度图像增强变分模型。根据亮度分量初步估计低照度图像取反之后图像的透射率,并利用Retinex算法进行细化,以丰富图像的细节。为了抑制噪声的放大且保持边缘信息,根据亮通道先验原理和局部方差构建权重,自适应地调节正则化参数。采用交替迭代最优化方法求解包含透射率和恢复图像的能量泛函得到最优解。实验结果表明,该模型可有效地增强低照度图像,且能保留更多的图像细节、抑制噪声放大,相比于[l1]范数正则化方法,图像尺寸越大,该模型计算效率越高,计算时间优势越明显。 相似文献
8.
低照度图像增强算法的研究与实现 总被引:3,自引:0,他引:3
针对低照度图像暗且对比度低的特点,提出了一种将改进的直方图均衡化方法与改进的局部对比度增强方法相结合的低照度图像处理方法,满足了图像增强的两种要求:调节动态范围,增强局部对比度。实验表明该方法在对低照度图像处理时可以达到局部细节对比度增强和全局清晰的效果。 相似文献
9.
10.
由于低照度环境下所采集的图像存在亮度低、对比度差、出现噪声和色彩失衡等低质问题,严重影响其在图像处理应用中的性能.为了提升低照度图像质量,以获得具有完整结构和细节且自然清晰的图像,结合Retinex理论与卷积神经网络,提出了一种基于MDARNet的低照度图像增强方法,并引入Attention机制模块和密集卷积模块以提升性能.首先,MDARNet利用同时包含二维和一维的3个不同尺度卷积核对图像进行初步特征提取,并用像素注意模块对多尺度特征图进行针对性学习;其次,设计跳跃连接结构对图像进行特征提取,使图像特征被最大限度地利用;最后,用通道注意模块和像素注意模块同时对提取到的特征图进行权重学习和照度估计.实验结果表明:MDARNet能够有效提升低照度图像的亮度、对比度、色彩等;且相较于一些经典算法,该方法在视觉效果及客观评价指标(PSNR,SSIM,MS-SSIM,MSE)能够得到更好的效果. 相似文献
11.
应用于光照分布不均的低照度图像,传统的图像增强算法会出现色彩失真、亮区过度增强等问题,因此提出一种最大差值图决策的低照度图像自适应增强算法。首先,提出最大差值图的概念,通过最大差值图粗略估计出初始光照分量;然后,提出交替引导滤波的算法,利用交替引导滤波对初始光照分量进行校正,实现光照分量的准确估计;最后,设计了图像亮度自适应的伽马变换,能够根据获取的光照分量自适应调整伽马变换参数,从而在增强图像的同时消除光照不均带来的影响。实验结果表明,增强后的图像有效消除了光照分布不均带来的影响,图像亮度、对比度、细节表现能力和色彩保真度都得到了明显提升,平均梯度提升了1倍以上,信息熵提升了14%以上。由于提出的算法对光照分量估计准确,自适应伽马变换针对低照度图像进行了优化,因此,对于夜间等弱光源条件下的彩色图像具有十分有效的增强效果。 相似文献
12.
13.
图像的相位信息在人眼感知图像的过程中起着十分重要的作用。如果指纹图像增强算法能够保证图像的相位信息不被破坏,将有助于保持指纹图像中纹理特征的不变。首先通过实验表明了指纹图像的纹理特征主要是由图像的相位信息来决定的,然后把相位保持原理引入到指纹图像增强算法中,提出一种新的基于相位保持的指纹图像增强算法。该算法采用复Gabor小波来提取指纹图像的相位信息,并利用指纹图像的局部方向信息在相位保持的原则下来进行图像增强。为了验证该算法的有效性,选取了两种低质量的指纹图像来进行处理,实验结果表明增强后的图像其图像质量有了显著的提高。 相似文献
14.
针对现有低照度图像增强算法难以同时处理亮度、对比度、伪影和噪声等因素,提出了多分支残差与仿射变换低光增强网络,其核心思想是运用不同模块处理不同的任务.首先通过光照估计模块获得低光图像的光照变量,然后使光照仿射变换模块与光照编码参数融合恢复图像的光照,最后通过细节重建模块融合更多的图像细节获得最终输出.实验结果表明,该方法有效地丰富了图像的纹理细节,同时增强了亮度和对比度,并具有更少的伪影和噪声.通过与其他主流方法进行比较,定量和定性地证明了提出方法对低光图像增强的效果更好. 相似文献
15.
16.
人脸检测有广泛的应用前景,但目前的许多人脸检测算法对光照有一定的要求,过亮过暗偏光图像使检测率急剧下降。提出一种自适应同态对数光照补偿方法,用对数函数作为基函数,使变换后的图像符合人的视觉特点;设置对数函数的平移系数,使变换对各种程度过暗过亮偏光阴影图像都可以进行有效的补偿;引入同态补偿公式来补偿光照的同时增强图像细节,使变换后的图像更清晰。实验结果表明,该方法对过暗过亮的人脸图像都可以进行有效的光照补偿,有助于提高人脸检测率。 相似文献
17.
目的 在遥感应用如目视解译等任务中,需要提高遥感影像的视觉质量,为此提出一种基于暗通道原理和双边滤波的遥感图像增强算法。方法 由于暗通道模型的softmatting过程计算复杂性高,故使用双边滤波估计大气光幕,进而获得优化透射图,代替He算法中softmatting过程,提高了计算效率。针对将暗通道原理应用于遥感图像增强时所产生的色彩失真现象,提出透射图的改进算法,提高景深图像的取值,同时约束其最大值不大于1。最后,基于景深图像和暗通道原理获得增强后的遥感图像。结果 实验结果表明,本文算法能够有效地增加图像的对比度。与基于双边滤波单尺度Retinex图像增强、四尺度Retinex增强、直方图均衡化及MSRCR增强的结果进行了比较,实验结果验证了算法的有效性。结论 本文模型能够使处理后的遥感图像更符合视觉特性,以便于目视解译与分析。该算法适用于遥感图像的可视化增强。 相似文献
18.
针对现有算法对图像边缘细节增强不足及无法有效控制各尺度信息增强程度的问题,提出了多级分解的Retinex低照度图像增强算法。该算法在Retinex分解模型和双边滤波的基础上,通过设置不同的滤波参数,获取表征图像不同尺度信息的反射分量和照度分量;通过使用指数函数对分解得到的各级反射分量进行增强,能够有效提升图像边缘细节的表达能力;通过使用S型函数对最终的照度分量进行处理,能够在提升低照度图像整体亮度的同时抑制高亮度区域;通过颜色恢复函数对增强图像进行后处理,进一步避免色彩偏差和失真的问题。实验结果表明,新算法能够改善低照度图像的视觉质量,在清晰度、信息熵、对比度等指标方面都有所提升。 相似文献
19.
为了增强彩色图像而不引起色彩失真,在HSV颜色空间中保持色相不变,提出了采用分段对数变换增强饱和度结合在多尺度Retinex算法的基础上,采用边缘保持增强色调的低照度彩色图像增强算法。实验结果表明,该方法在保持图像色相和图像边缘的情况下,显著改善了图像的视觉效果,提高了图像的亮度和对比度。25幅低照度图像的平均亮度、标准偏差和对比度分别提高了94.95%、20.93%和29.88%,相对于带色彩恢复的多尺度Retinex算法的熵和对比度增量分别提高了7.34%和151.51%,效果优于Retinex算法。 相似文献