首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以速生杉木为原料,经过苯酚液化物后加入六次甲基四胺熔融纺丝,初纺纤维固化处理后直接炭化制备出碳纤维,并对碳纤维的比表面积、孔径分布以及吸附特性进行了研究。研究结果表明,木材液化物碳纤维样品的等温线属于典型的Ⅰ型吸附等温线,其吸附滞后回线属于H4型。木材液化物碳纤维孔径主要以微孔为主,微孔率达到73.4%。碳纤维样品的BET比表面积、微孔面积、微孔容随着炭化温度的提高呈增大趋势,其中600~800℃是其孔隙结构发生变化的关键温度区间。液化原料中木材/苯酚比对其制备的碳纤维的比表面积、孔容及孔径的影响变化不大。  相似文献   

2.
利用木材苯酚液化物合成纺丝液, 熔融纺丝制成新的炭纤维原丝, 研究了纺丝液合成因素对原丝性能的影响。试验结果表明: 增加合成纺丝液时液化原料中的苯酚/木材比(液固比), 则原丝的力学性能提高明显, 其中液固比由3增加至4时, 原丝拉伸强度增加了近9倍; 合成剂用量的增加却导致原丝力学性能的降低, 当合成剂用量为6%时, 原丝的拉伸强度和拉伸模量降幅较明显, 而断裂伸长率的最大降幅却出现在合成剂用量为4%时; 原丝的拉伸强度和拉伸模量随合成温度的升高而增加, 但增幅较小, 断裂伸长率随合成温度的升高却呈下降趋势, 且从110℃升高到115℃时断裂伸长率降幅较大; 原丝的力学性能随合成纺丝液升温时间的增加而先升高后降低, 升温时间为40min时制备的炭纤维原丝的力学性能最优。   相似文献   

3.
利用废弃的榆木屑通过粉碎、液化、纺丝、固化、炭化和活化制备了木材液化物活性碳纤维,并探讨了活化温度为800℃时该活性碳纤维对苯酚的吸附性能。结果表明:800℃活化条件下制备木材液化物活性碳纤维处理100mL苯酚溶液时,当苯酚初始质量浓度为300mg/L、活性碳纤维投加量为0.1g、木材液化物活性碳纤维吸附时间为240min时达到平衡。木材液化物活性碳纤维对苯酚的吸附性能符合二级动力学方程,Langmuir等温式更能描述木材液化物活性碳纤维对苯酚的吸附行为。  相似文献   

4.
采用拉挤成型工艺制备了结构均一有序、外貌光亮顺滑的高性能碳纤维/环氧树脂复合材料板,并对其进行了力学性能测试。研究结果表明:高性能碳纤维/环氧树脂复合材料板,在0°条件下,拉伸强度1889MPa,拉伸模量141GPa,压缩强度1212MPa,压缩模量130GPa,弯曲强度1107MPa,弯曲模量136GPa;在90°条件下,弯曲强度86MPa;层间剪切强度61.834MPa,具有较好的力学性能。  相似文献   

5.
对未经炭化和经不同温度炭化处理后的三维五向碳/酚醛编织复合材料进行了纵向和横向拉伸实验, 获得了拉伸应力-应变曲线, 并确定了材料的拉伸强度、 拉伸模量、 破坏应变和泊松比等主要力学性能, 分析了这类材料经不同温度炭化处理后拉伸力学性能的变化规律。对试件拉伸实验后的破坏断口进行了宏观和微观分析, 探讨了材料的变形和破坏机理。实验结果表明: 随炭化处理温度的增加, 三维五向碳/酚醛编织复合材料的纵向、 横向拉伸强度和拉伸模量均呈先降后升的趋势, 存在一个转折温度, 超过该温度, 材料的拉伸强度和拉伸模量从下降变为上升, 但拉伸模量的变化幅度较小; 但是, 随着炭化温度的升高, 材料的破坏应变是逐渐降低的。通过形貌观察和树脂热分解机理分析, 认为在不同的炭化处理温度下, 材料的细观组织结构演变存在明显的差异, 因此造成了材料力学性能的变化。   相似文献   

6.
以速生杉木原料,经过苯酚液化物后加入六次甲基四胺熔融纺丝,初纺纤维固化处理后直接炭化制备出碳纤维,利用 SEM、FTIR、Raman光谱和元素分析等对碳纤维进行了表征。研究结果表明:随着炭化温度的提高,杉木苯酚液化物碳纤维中出现了类石墨碳材料典型的马鞍状拉曼谱图,其D峰和G峰分别位于1360 cm-1和1595 cm-1处;碳纤维样品的无序化程度R值逐渐减小,石墨微晶尺寸La逐渐增大,纤维内部微观结构逐步趋于有序化。1000℃获得的碳纤维表面光滑,断面形状为椭圆形,其C、O、H的质量分数分别为94.04%、4.26%、0.5%。  相似文献   

7.
郑天麒 《功能材料》2022,(12):12147-12151
以环氧树脂E51为基础材料,碳纤维为增强材料,制备出了不同碳纤维掺杂量(0,3%,6%,9%(质量分数))的改性环氧树脂基复合材料,研究了碳纤维掺杂量对环氧树脂基复合材料力学性能、微观形貌、热稳定性和导热性能的影响。结果表明,适量碳纤维的掺杂提高了环氧树脂基复合材料的力学性能、热稳定性和导热性能。随着碳纤维掺杂量的增加,改性环氧树脂基复合材料的拉伸强度、断裂延伸率、弯曲强度和弯曲模量均先增大后降低,当碳纤维的掺杂量为6%时,复合材料的拉伸强度、断裂延伸率、弯曲强度和弯曲模量均达到了最大值,分别为48.5 MPa, 1.86%,85.6 MPa和3.09 GPa。随着碳纤维掺杂量的增加,复合材料的分解温度和残留量先升高后降低,当碳纤维的掺杂量为6%时,复合材料的分解温度和残留量达到最大,分别为453.7℃和4.9%。复合材料的导热系数随碳纤维掺杂量的增加而增大,当碳纤维的掺杂量<6%时,导热系数增长速率较快。综合分析可知,碳纤维的最佳掺杂量为6%。  相似文献   

8.
碳纤维三维编织复合材料的结构对拉伸和弯曲性能的影响   总被引:9,自引:0,他引:9  
研究了碳纤维四步法三维四向、三维五向编织结构复合材料的拉伸和弯曲性能,以及结构参数-编织角的变化对其拉伸和弯曲性能的影响,并与层合复合材料作了对比性研究.结果表明,三维编织复合材料具有良好的力学性能,其拉伸强度可达810MPa、拉伸模量可达95.6GPa,弯曲强度可达829.03MPa、弯曲模量可达67.5GPa.同时,编织角和编织结构对复合材料性能有较大的影响.随着编织角的增大,复合材料的拉伸、弯曲强度和模量均减小;三维五向结构的拉伸、弯曲强度和模量均高于四向结构;在纤维体积含量相近的情况下,通过对编织角的设计,可以设计三维编织复合材料的性能.  相似文献   

9.
以单向连续竹青纤维(OBF)和不饱和聚酯树脂(UP)制备了单向OBF/UP复合材料,研究了OBF含量对OBF/UP复合材料纵向静态力学性能及动态力学性能的影响,并采用SEM观察了复合材料拉伸断面处界面结合情况。结果表明:随着OBF含量的增加,OBF/UP复合材料静态力学性能呈先增加后减小趋势,当OBF含量为50wt%时,复合材料拉伸、弯曲性能最优,拉伸强度、拉伸模量、弯曲强度、弯曲模量分别达到285.52 MPa、16.06 GPa、359.80 MPa、27.32 GPa;OBF/UP复合材料存储模量随OBF含量增加呈先增加后减小趋势,当OBF含量为50wt%时,OBF/UP复合材料存储模量最大,且随着OBF含量的增加,OBF/UP复合材料玻璃化转变温度向低温方向移动,损耗峰变宽;断面处微观形貌表明,OBF含量为50wt%时,复合材料界面结合强度较好。制备的OBF/UP复合材料力学性能优良,有潜力取代玻璃纤维增强树脂复合材料在风电叶片材料、公路防护栏材料、船舶材料等领域的应用。   相似文献   

10.
聚丙烯腈(PAN)碳纤维由有机纤维经过高温处理得到,其结构和性能与热处理时间密切相关。采用固体核磁共振碳谱仪、热失重分析仪、X射线衍射仪和力学性能分析等研究了热处理时间对预氧纤维结构、碳纤维结构和性能的影响。结果表明:预氧化时间的延长使环化、脱氢和氧化反应形成的—C═N、C═C、C═CH、C═O含量增加,使预氧纤维的稳定性增强,形成的碳纤维微晶尺寸较小、层间距较大,碳纤维拉伸强度和拉伸模量较大,但体密度较低;随着碳化时间的延长,纤维的热稳定性呈现先下降后增强的趋势,碳纤维的微晶尺寸增大,层间距减小,碳纤维的体密度、拉伸强度和拉伸模量增加。  相似文献   

11.
以木材液化物和六次甲基四胺为原料, 利用熔融纺丝法制备初始纤维。将初始纤维置于甲醛和盐酸混合液中进行固化处理制成木材液化物碳纤维原丝。考察了固化处理对木材液化物碳纤维原丝的孔隙结构、 晶态结构及热稳定性的影响。结果表明: 初始纤维和原丝的吸附等温曲线属于 Ⅱ 型吸附等温线, 初始纤维和原丝比表面积分别为0.517 m2·g-1和0.142 m2·g-1。杉木木粉中具有典型的纤维素 Ⅰ 晶体衍射峰; 初始纤维和原丝中纤维素 Ⅰ 特征峰消失, 且18.8°附近出现新的衍射峰, 说明形成了新的晶态物质; 原丝中18.8°附近的特征衍射峰增强, 结晶度提高。初始纤维失重率为88.3%, 原丝为60%, 初始纤维到原丝表观活化能由31.31 kJ·mol-1增大到39.18 kJ·mol-1, 原丝热稳定性提高。  相似文献   

12.
Bamboo fibers are very promising reinforcements for polymer composites production due to its high aspect ratio and strong mechanical performances. In order to better understand their reinforcing potential, the mechanical properties of single bamboo fibers extracted from eleven commercial bamboo species in China were measured with a newly developed microtensile technique. For comparison, the mechanical properties of mature single Chinese Fir and Masson Pine wood fibers were measured. The results show that the average longitudinal tensile modulus of the eleven kinds of bamboo fibers ranges from 25.5 to 46.3 GPa with an average value of 36.7 GPa. For tensile strength, the value ranges from 1.20 to 1.93 GPa with an average value of 1.55 GPa. The tensile strength and modulus of bamboo fibers are nearly two times of that of single Chinese Fir and Masson Pine fibers, and significantly higher than most of the published data for other softwood fibers. The average elongation at break of bamboo fibers is about 4.84 %, only a little lower than the value 5.15 % of the tested mature softwood fibers. Additionally, bamboo fibers were found to have smaller diameters and larger aspect ratio than most documented wood fibers, which favored an improved reinforcing effect. These combined mechanical and morphological advantages highlight the potential of bamboo fibers as the reinforcing phase in polymer composites for structural purpose.  相似文献   

13.
Polyethylene fibers are attractive as carbon fiber precursors due to their high carbon content and ease of manufacture. Also, highly ordered and oriented fibers with extraordinary physical and mechanical properties are available today. However, being thermoplastic fibers, they soften or melt at a fairly low temperature, losing their fiber form. These precursors have to be stabilized by introducing cross links in them so that they can withstand the higher temperatures of carbonization. Heating in a sulfuric acid bath was investigated as a possible means of stabilizing these fibers. The process of stabilization was studied using several characterization techniques, such as thermal analyses (DSC and TGA), color change, tensile properties, X-ray diffraction and electron microscopy. The fibers had a tendency to shrink to a great extent and the tension had a major role during the process of sulfonation. Some of the stabilized fibers were carbonized and their properties were evaluated  相似文献   

14.
网状和皮芯结构对生产高性能碳纤维组织演变的影响   总被引:7,自引:0,他引:7  
为了研究聚丙烯腈纤维各级超分子结构形态及结晶的微观形态,弄清楚制备碳纤维的过程与所得到纤维结构和性能的关系,用透射电子显微镜分析了凝胶网络和皮芯结构的形成及预氧化和炭化过程中纤维结构的演变历程.结果表明:原丝具有明显的皮芯结构,外表层凹凸不平,从表层至心部是一层过渡区,表层的片层较心部的薄且致密.碳纤维网络骨架间接点的密集程度和原丝的密集程度有直接关系,原丝网络骨架的接点密集度低及晶粒组织大,随后得到的最终碳纤维密集度低及晶粒组织也大,其强度和模量明显高.碳纤维强度主要是纤维中弥散分布的"小晶区"做出的贡献;原丝微观结构中,"晶区"数量、大小和弥散分布情况以及构成三维空间网络结构的致密程度决定了预氧丝和碳纤维的性能.  相似文献   

15.
为了探究Na2HPO4活化处理引起的木材苯酚液化物碳纤维微细结构的变化,以Na2HPO4溶液为活化剂对杉木苯酚液化物碳纤维原丝进行了浸渍、干燥和不同温度的活化处理,对活性碳纤维的晶体结构、孔隙结构和表面化学结构进行了表征。结果表明:随着活化温度的上升,活性碳纤维的得率逐渐减小。活性碳纤维的晶体结构属于类石墨结构;随着活化温度上升,微晶层间距d002减小,而石墨片层平面尺寸Lc和Lc/d002增加。活化温度在600℃或700℃时,微孔率小于48vol%;当活化温度为800℃或900℃时,微孔率大于60vol%。活性碳纤维的微孔孔径主要集中在0.5~1.6nm范围内,中孔孔径主要分布在2.0~4.0nm范围内。随着活化温度的上升,纤维的比表面积和孔容积均逐渐增加,900℃时二者均达到最大值,此时的比表面积为1 306m2/g。C和O是活性碳纤维的基本元素,纤维表面大部分的含碳基团为石墨碳,含有少量的C—OH、CO和—COOH。研究为制备新型活性碳纤维和进一步探明活化剂同碳纤维分子之间相互作用提供参考。  相似文献   

16.
利用热应力、DSC、FTIR、元素分析(EA)、XRD及力学性能、密度等测试表征手段,结合小丝束(24K)聚丙烯腈(PAN)原丝,解析了大丝束(48K) PAN原丝的热反应特性,并采用50 min连续预氧化制备高性能大丝束碳纤维,研究了大丝束PAN原丝连续预氧化过程中的结构性能演变规律。结果表明,大丝束PAN纤维的化学热应力是小丝束的1.13~1.43倍,且启动温度更低,当温度为250℃时,化学热应力差值最大,对应大丝束纤维密度为1.316 g/cm3;纤维内准晶区在反应初期即大量转化为无定形状态,准晶区晶粒尺寸呈现先增大后减小的趋势;50 min连续预氧化制备的大丝束碳纤维单丝拉伸强度和拉伸模量分别为4 240 MPa和244 GPa,相关力学性能达到市售国外大丝束碳纤维同等水平。  相似文献   

17.
Currently, carbon fibers (CFs) from the solution spinning, air oxidation, and carbonization of polyacrylonitrile impose a lower price limit of ≈$10 per lb, limiting the growth in industrial and automotive markets. Polyethylene is a promising precursor to enable a high‐volume industrial grade CF as it is low cost, melt spinnable and has high carbon content. However, sulfonated polyethylene (SPE)‐derived CFs have thus far fallen short of the 200 GPa tensile modulus threshold for industrial applicability. Here, a graphitization process is presented catalyzed by the addition of boron that produces carbon fiber with >400 GPa tensile modulus at 2400 °C. Wide angle X‐ray diffraction collected during carbonization reveals that the presence of boron reduces the onset of graphitization by nearly 400 °C, beginning around 1200 °C. The B‐doped SPE‐CFs herein attain 200 GPa tensile modulus and 2.4 GPa tensile strength at the practical carbonization temperature of 1800 °C.  相似文献   

18.
The influence of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers was studied. It was observed that the Young’s modulus of the treated fibers increased with heat treatment temperature (HTT) and hot stretching stress, to 173 GPa by 158.2 % through hot stretching at 2700 °C under stress of 270 MPa compared to that of the as-received carbon fiber. Meanwhile the tensile strength increased to 1.75 GPa by 73.3 % through hot stretching at 2700 °C under 252 MPa. The field emission scanning electron images showed markedly increased roughness on the external surface and bigger and more compacted granular morphologies on the cross section of the treated fibers with increasing HTT. The preferred orientation of graphitic layers was improved by hot stretching, and the higher the HTT, the stronger the effectiveness of the hot stretching. The crystallite sizes grew and the crystallite interlayer spacing decreased obviously with increasing HTT but changed just slightly with increasing stretching stress. The analysis based on uniform stress model and shear fracture theory proposed that the improvement of tensile strength and Young’s modulus for rayon-based carbon fiber was mainly due to the increased preferred orientation and nearly unchanged shear modulus between planes with increasing HTT during hot stretching graphitization, which was much different from polyacrylonitrile-based carbon fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号