首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴迪  李壮  吕伟 《钢铁》2012,47(8):36-38,40,42
通过实验室热轧机组的控轧控冷试验,研究了控轧控冷参数对超高强铁素体/贝氏体双相钢组织性能的影响。结果表明,采用不同温度终轧,轧后不同方式冷却,抗拉强度几乎都在1 000MPa以上,屈强比在0.54~0.62之间,伸长率在13%~17%之间。铁素体晶粒随终轧温度降低和冷却速度加快而细化;终冷温度降低,贝氏体量增多。经800℃终轧后层流冷却至560℃左右空冷,由于铁素体晶粒细化,组织中大量的粒状贝氏体、无碳化物贝氏体、少量的孪晶马氏体以及残余奥氏体的存在使抗拉强度达1 130MPa,伸长率达16%,强塑积达到18 080MPa.%的最高值。控轧控冷获得以铁素体/贝氏体双相组织为主并含有少量残余奥氏体+马氏体的复相组织,使试验钢具有了优异的力学性能。  相似文献   

2.
通过实验室φ350 mm 4辊轧机对V-Nb-Wi微合金化X100管线钢(%:0.057C、1.84Mn、0.25Mo)进行控轧控冷试验。结果表明,在1 100℃始轧,800~900℃终轧,100~400℃终冷温度下,X100钢的组织为针状铁素体+粒状贝氏体-下贝氏体。降低终轧温度可细化组织,提高钢的强度;降低终冷温度可提高钢的强度,但使钢的韧性降低。X100管线钢的最佳轧制工艺为终轧温度850℃,终冷温度200℃。  相似文献   

3.
在实验室Φ450 mm轧机上进行了铁素体/贝氏体双相钢(/%:0.22C,0.47Si,2.50Mn,0.05Al,0.02Nb,0.41 Cu)终轧800~860℃的控轧控冷实验。结果表明,实验钢经控轧控冷后,获得以铁素体/贝氏体双相组织为主并含有少量残余奥氏体+马氏体的复相组织。降低终轧温度、加快冷却速度可使铁素体晶粒细化。800℃终轧后层流冷却到560℃,然后空冷到室温的实验钢组织中残余奥氏体含量为11.4%,对强度和韧性的良好匹配贡献很大,其力学性能为:抗拉强度(Rm)1131MPa ,屈强比(Rp0.2/Rm)0.61,伸长率(A50)16%,强塑积(Rm×A50)18096 MPa·%  相似文献   

4.
通过动态CCT曲线测试和实验室控轧控冷试验,分析了900 MPa级热轧带钢连续冷却过程中的相变过程以及不同卷取温度下显微组织、析出相和力学性能的关系。试验结果表明:随着冷却速度提高,显微组织中多边形铁素体比例下降,贝氏体组织比例升高,冷速大于15℃/s时,显微组织全部为贝氏体;随着卷取温度升高,显微组织中针状铁素体比例下降,多边形铁素体比例升高;当卷取温度为600℃时,组织为铁素体+少量珠光体,此时析出相细小弥散,可获得抗拉强度达到1 000 MPa,延伸率17%的热轧产品。  相似文献   

5.
通过Gleeble-1500热模拟实验机对冷镦钢10B21(/%:0.20C,0.02Si,0.85Mn,0.014P,0.005S,0.001 8B)精轧前Φ28 mm圆坯进行控轧控冷工艺热模拟试验,以研究变形速率20 s~(-1),变形量65%时终轧温度(850~1 000℃)、吐丝温度(820~940℃)和相变区冷却速度(0.2~1.0℃/s)对该钢组织的影响。结果表明,增加吐丝温度和相变区冷却速度可明显提高钢中铁素体含量,增加相变区冷却速度,可有效地改善钢的带状组织。为了获得较高的铁素体含量、粗大的铁素体晶粒且较均匀的组织,以提高钢的冷镦性能,较佳的控轧控冷工艺为终轧温度950℃、吐丝温度910℃、相变区冷却速度1.0℃/s。  相似文献   

6.
依托于超快速冷却技术(UFC)开发出一种钛微合金Q460钢板。研究轧后超快冷至不同温度(560℃、610℃和680℃)后试验钢的组织性能和析出行为,并对其综合强化机理进行了研究。研究结果表明:不同终冷温度条件下,试验钢组织均为多边形铁素体和块状珠光体组织,且随终冷温度降低,晶粒明显细化;经TEM分析统计,TiC数量密度随终冷温度的升高而增大;试验钢的抗拉强度和屈服强度随着终冷温度的升高均先降低后升高,-20℃冲击功随终冷温度的降低逐渐升高;当终冷温度为680℃时,试验钢屈服强度可达510 MPa,固溶强化、细晶强化、位错强化、析出强化对屈服强度的贡献率分别可达42 MPa、188 MPa、62 MPa和217 MPa。说明析出强化和细晶强化为试验钢的两种重要强化方式。  相似文献   

7.
试验分析了控轧控冷工艺参数对不同微合金体系的460 MPa级高强韧海工钢板组织性能的影响。试验结果表明:Nb、Ti微合金化的基础上加入适量的Ni元素能改善钢的强度和韧性,尤其是钢在低温下的冲击性能;采用大的压下量即第二阶段的轧制总压下率一般应略大于70%,有助于钢的晶粒细化,获得组织类型为多边形铁素体+准多边形铁素体+针状铁素体+粒状贝氏体和一些弥散的分布的珠光体和残余奥氏体,进而改善钢的最终性能。  相似文献   

8.
基于热力模拟实验及相变实验,设计了钒微合金化MG700高强锚杆钢的合理控制轧制及控制冷却工艺,具体为:采用970~1 050℃进行粗中轧、800~840℃进行精轧的控制轧制工艺,以及采用中轧和精轧之间穿水冷却,控制终冷温度820~850℃、精轧后空冷的控制冷却工艺。上述控轧控冷工艺工业试生产结果表明,MG700锚杆钢的屈服强度稳定为720~760 MPa,抗拉强度稳定为885~925 MPa,断后延伸率稳定为17.5%~19.0%,综合力学性能优良。MG700锚杆钢的微观组织以铁素体和珠光体为主,铁素体晶粒直径介于0.60~13.64μm之间,平均直径约为3.86μm。研发的新型MG700高强锚杆钢力学性能及微观组织特征满足煤炭行业锚杆用钢的相关标准,可为同类产品的开发提供理论支撑和实践经验。  相似文献   

9.
杨浩  周晓光  刘振宇  王国栋 《钢铁》2013,48(1):75-81
 通过热模拟试验和实验室热轧试验,结合含Nb船板钢的CCT曲线,重点研究了超快冷条件下试验钢中Nb在相变区的析出行为。结果表明,试验钢变形后快速冷却至600℃保温不同时间时,得到的组织为针状铁素体组织,而在650℃等温时,组织中多边形铁素体含量随等温时间延长逐渐增多;不同温度下保温,随着保温时间的延长,析出相粒子的数量有所增多,尺寸也有所增大;在实验室条件下采用910℃终轧+超快速冷却工艺,相比于850℃终轧+层冷工艺组织中的粒子析出量大大增加,微合金的析出强化作用得到加强,得到轧件的强度相比于低温终轧并没有降低,说明超快速冷工艺不仅可以更好地发挥Nb的析出强化作用,提高含Nb船板钢的强度,而且可以适度提高试验钢的终轧温度,降低轧制力,提高轧制节奏。  相似文献   

10.
根据抗H2S腐蚀X70管线钢的使用特点,采用低碳、超低硫、超低磷、控制Mn含量的技术思路,以控制MnS夹杂物数量和形态、铸坯的枝晶偏析与中心偏析。通过实验室的控轧控冷试验,分析了不同终轧温度和终冷温度对组织和性能的影响,试验结果表明,终轧温度为820℃和840℃时,均可获得准多边形铁素体+粒状贝氏体组织,随着终轧温度的降低,晶粒细化;随着终冷温度的降低,粒状贝氏体含量增加。通过实验室研究结果,确定了工业生产方案,并完成了工业试制。试验结果表明,在820℃终轧,400℃卷取可以获得组织为准多边形铁素体+粒状贝氏体、综合性能优良的产品,其抗HIC敏感测试为0,抗SSCC性能未失效。  相似文献   

11.
薄板坯连铸连轧低温卷取生产双相钢的工业试验   总被引:2,自引:1,他引:1  
在薄板坯连铸连轧生产线上,利用微合金元素Nb、Ti析出抑制再结晶发生,加工硬化奥氏体加速铁素体相变,轧后连续快速冷却至低温卷取,利用细晶强化和相变强化生产低成本高强度热轧双相钢。在FTSR生产线上进行工业试验。结果表明,在终轧800~820℃,快速冷却至卷取温度300℃以下,可以得到铁素体和马氏体双相组织,屈服强度400MPa以上,抗拉强度超过650MPa,屈强比低于0.70,伸长率大于20%。  相似文献   

12.
对低碳V-N-Cr微合金化钢进行了控轧控冷实验,终冷后采用了随炉冷、保温毡缓冷、空冷三种冷却制度,9mm厚钢板获得了细小多边形铁素体及针状铁素体复相组织,铁素体晶粒尺寸5~8μm,针状铁素体由交织的板条组成,宽度1~3μm,在随炉冷及保温毡缓冷时,由于冷却速率缓慢,多边形铁素体及针状铁素体发生了回火,并析出细小弥散的碳化物。三种冷却条件下,屈服强度均≥585MPa,抗拉强度≥694MPa,延伸率≥27%,而且1/2试样-60℃冲击功≥36J,综合力学性能优于Q550F级国标要求。细晶强化、析出强化、组织强化为主要强化方式,冲击断口均由韧窝组成,呈现韧性断裂模式,控轧控冷引起的晶粒细化及针状铁素体的形成有效阻碍解理裂纹的扩展,从而增强低温韧性。本次实验室组织性能研究工作为V-N-Cr微合金化钢的工业化试制提供工艺参考。  相似文献   

13.
张志慧  贾小华 《河北冶金》2023,(12):46-49+55
通过扫描电子显微镜、光学显微镜等对X60级管线钢显微组织与冲击试样断口形貌进行观察分析,研究了控轧控冷工艺对试验钢的热轧显微组织及低温冲击韧性的影响。结果表明:试验钢控轧控冷条件下冲击断口无明显裂纹源,基本呈现等轴韧窝形貌特征;其获得的针状铁素体组织较常规轧制下多边形铁素体组织更加细化、均匀,晶粒尺寸均值由20μm下降至8μm左右,其尺寸小于2μm的占比达75%以上;控轧控冷工艺较常规轧制试验钢具有更好的强度及塑韧性,尤其-10℃冲击功达到180 J以上。在生产过程中通过合理设定机架间冷却水强降温工艺与轧后层流冷却速率及卷取温度控制,实现精轧控制轧制与层流控制冷却相结合的控制工艺,可极大地改善超厚规格X60管线钢低温冲击性能。  相似文献   

14.
白海瑞  刘智光  张秀飞  黄利 《包钢科技》2021,47(2):49-51,84
采用低碳、铌钒钛微合金化成分设计及控轧控冷工艺在实验室进行了汽车大梁钢800L研制,研究了化学成分、加热保温温度和轧制及冷却工艺,进行了力学性能测试和显微组织分析.结果表明,试制的800L经1250℃保温后进行两阶段轧制,设定终轧温度860℃,轧后进行层流冷却,终冷温度600℃,得到力学性能优良的800L汽车大梁钢,其屈服强度、抗拉强度、断后伸长率分别为753 MPa、845 MPa、18.5%,180°弯曲试验合格.  相似文献   

15.
对低碳V-N-Cr微合金化钢进行了控轧控冷实验,终冷后采用了随炉冷、保温毡缓冷、空冷3种冷却制度,并对3种不同冷却制度钢板进行了显微组织、综合力学性能和断口形貌的分析。研究表明,空冷钢板显微组织为细小多边形铁素体及针状铁素体复相组织,铁素体晶粒尺寸5~8μm,针状铁素体由交织的板条组成,宽度1~3μm。在随炉冷及保温毡缓冷时,由于冷却速率缓慢,多边形铁素体及针状铁素体发生了回火,并析出细小弥散的碳化物。3种冷却条件下,屈服强度均≥585 MPa,抗拉强度≥694 MPa,延伸率≥27%,而且1/2试样-60℃冲击功≥36 J,综合力学性能优于Q550F级国标要求。细晶强化、析出强化、组织强化为本钢种的主要强化方式,冲击断口均由韧窝组成,呈现韧性断裂模式,控轧控冷引起的晶粒细化及针状铁素体的形成有效阻碍解理裂纹的扩展,从而增强低温韧性。  相似文献   

16.
采用金相显微镜、电子显微镜、化学相分析等手段研究了CSP热轧工艺对Ti微合金化高强钢组织和性能的影响。结果表明:880℃终轧、620℃卷取试验钢的屈服和抗拉强度分别为825、895 MPa,钢中存在大量的纳米尺寸TiC粒子,其沉淀强化效果超过150 MPa;卷取温度降低到580℃,TiC的析出受到抑制,沉淀强化效果明显减弱。卷取温度显著影响钢中第二相粒子的析出过程,终轧温度和卷取温度改变对晶粒尺寸也有影响,两者综合作用的结果使Ti微合金化钢的强度和韧性发生变化。  相似文献   

17.
根据棒材线在生产42CrMo钢Φ50 mm轧材容易造成硬度偏高,不能满足协议要求.通过控轧控冷结合冷床保温措施,终轧温度由原967 ~970℃降到860℃,冷却速率由原0.35℃/s降低到0.17℃/s,金相组织从之前的非平衡态组织贝氏体+铁素体+珠光体优化为铁素体+珠光体,使HB硬度值由原317降至252.由此工艺生...  相似文献   

18.
低碳490MPa级铆螺钢控轧控冷的研究   总被引:2,自引:0,他引:2  
吴迪  李壮 《钢铁》2008,43(4):61-65
通过控轧控冷试验,研究了不同工艺参数对ML15钢力学性能的影响.结果表明,由于应变诱导铁素体相变,铁素体晶粒细化,低温轧制较常规轧制后快速冷却可以获得更好的综合力学性能;常规轧制后快速冷却要优于低温轧制后慢冷试样的力学性能;终冷温度越低,珠光体片间距越细,强度和塑性越好;低碳铆螺钢采用控轧控冷不经热处理抗拉强度达到490 MPa级别,其力学性能远优于常规轧制后不控冷的同样试样.  相似文献   

19.
控轧控冷工艺对建筑用耐火钢组织和性能的影响   总被引:3,自引:0,他引:3  
以含Nb、Ti的微合金钢为对象,通过实验室控轧控冷实验,研究了终轧温度和冷却速度对该实验钢组织和力学性能的影响.实验结果表明,当组织为粒状贝氏体时,钢的强度较多边形铁素体明显提高,高温强度也较高,但韧性值有所下降.通过优化工艺参数,能够获得优良的综合性能,可以满足建筑用耐火钢的技术要求.  相似文献   

20.
试验钢(/%:0.19C,0.17Si,0.44Mn,0.004S,0.007P,0.041Als),由60kg真空感应炉熔炼,锻成120mm×140mm坯,轧成80 mm×80mm坯,再轧成4 mm×100mm成品。试验了950℃、800℃终轧和轧后水冷、空冷对该钢组织和性能的影响。结果表明,实验钢1000℃开轧,经二道次轧制,800℃终轧,以32.33~37.50℃/s的冷却速度水冷,工艺最佳,低碳钢珠光体为89%,铁素体晶粒尺寸38 nm达到了铆螺钢ML45级别。950℃终轧,水冷,力学性能达到了ML40级别。800℃终轧,空冷钢的力学性能也能达到ML30级别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号