首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
用焦亚硫酸钠、海波上层液分别处理沉钒废水,研究表明:海波上层液还原沉钒废水COD高达2 878 mg/L,远超排放标准;用焦亚硫酸钠还原沉钒废水,中和、沉淀能够获取低COD废水、低铁含铬渣。用焦亚硫酸钠处理沉钒废水工业运行技术条件:焦亚硫酸钠加入倍数3.1~3.2,还原反应时间15~30 min。处理后废水经汽提脱氨塔脱氨后,排向污水处理厂的废水未检出六价铬,COD平均值65 mg/L,符合辽宁省地方排放标准《污水综合排放标准》DB21/1627—2008排放限值,所得含铬渣中铁含量较低(以Fe2O3计0.27%),铬含量高(以Cr2O3计41.6%)。含铬渣经煅烧窑煅烧、炉外法冶炼出牌号JCr95金属铬(Cr≥95%)产品,质量合格。  相似文献   

2.
针对高铬钒渣氧化钠化焙烧—水浸提钒铬工艺获得钒铬液的特点,解决常规铵盐沉钒工艺产生高Na~+、高NH_4~+废水难处理的问题,选用水热法水解沉钒技术从高铬高钠的钒液中高效分离提取出钒,为后续提铬及废水处理创造了有利条件。分别研究了水解沉钒温度、pH值和反应时间与沉钒率和铬损失率的关系,结果表明:在反应pH值1.8,温度120℃,反应时间180 min的条件下可获得接近90%的沉钒率,水解产物经打浆洗涤—煅烧后即制得满足98粉钒标准(YB/T 5304—2011)要求的氧化钒产品。  相似文献   

3.
李信  李明  梁斌 《钢铁钒钛》2016,(4):20-24
高铬型钒渣钠化焙烧-水浸-沉钒后获得了酸性铬溶液,为了生产合格的铬化工产品,必须除去其中的钒。采用硫酸铁为除钒试剂,研究了铁盐加入量、反应温度和pH值等因素对除钒效率的影响。结果表明,当铁盐添加量为9(以Fe/V摩尔比计)、反应温度80℃、反应终点pH为6~7时,除钒率可达97%,铬溶液中残留钒浓度小于0.08 g/L,铬损失率小于3.7%,能够满足后续生产重铬酸钠或三氧化二铬产品的要求。  相似文献   

4.
电解锰废水中Cr~(6+)、Mn~(2+)的去除方法研究   总被引:1,自引:0,他引:1  
通过实验研究了还原沉淀-晶种曝气组合工艺去除电解锰废水中Cr6+和Mn2+,并探索了最佳工艺条件.首先以Na2SO3做还原剂将Cr6+转化为Cr3+后再通过化学沉淀法除去,然后采用加入MnO2做晶种曝气氧化去除废水中的Mn2+.结果表明:当Na2SO3投加量为0.5 g/L,还原反应pH值为4,还原反应时间6 min,Cr6+可完全转化为Cr3+.Cr3+在pH值为8时沉淀最完全,出水总铬浓度可从100 mg/L降到0.5 mg/L以下.除铬后,当MnO2投加量为25 g/L,废水pH值为9,曝气10 min,出水Mn2+浓度可从1 000 mg/L降到0.4 mg/L以下.通过以上处理出水总铬和总锰均达到我国《污水综合排放标准(GB8978-1996)》一级要求.  相似文献   

5.
提高沉钒废水中V^5+、Cr^6+处理能力的途径   总被引:1,自引:1,他引:0  
通过对还原沉钒废水中V5+、cr6+还原剂的选用和还原-调pH后溶液沉降速度和固液分离后固体残渣量的研究,找到了一种使沉钒废水中V5+、cr6+还原速度快、还原-调pH后溶液沉降速度快且固体渣量少的方法.在不增加沉钒废水处理设备的基础上,可提高沉钒废水的处理能力.  相似文献   

6.
采用生物制剂与石灰三段法深度处理株洲冶炼集团股份有限公司酸性重金属废水,工业试验运行过程中对总废水及处理后出水中各重金属浓度进行监测,并对渣样进行分析。结果表明:重金属浓度分别由锌84.63-583.39 mg/L,铅1.11-20.43 mg/L,镉2.38-19.18 mg/L,铜0.35-6.51 mg/L,砷0.71-1.19 mg/L,汞0.001 2-0.063 mg/L脱除至锌0.12-0.83 mg/L,铅0.18-0.46 mg/L,镉0.008-0.046 mg/L,铜0.12-0.19 mg/L,砷0.005-0.009 mg/L,汞0.000 12-0.002 2 mg/L,处理后出水各重金属含量均远低于《铅、锌工业污染物排放标准GB 25466-2010》。整套工艺只需控制一段水解pH值为9.0,无需硫酸、NaOH再次调节二段及三段水解pH值。配合渣中锌的质量分数达到了29.5%,可以作为锌冶炼企业的原料回收其中的重金属。  相似文献   

7.
通过实验研究了还原沉淀-晶种曝气组合工艺去除电解锰废水中Cr6+和Mn2+,并探索了最佳工艺条件.首先以Na2SO3做还原剂将Cr6+转化为Cr3+后再通过化学沉淀法除去,然后采用加入MnO2做晶种曝气氧化去除废水中的Mn2+.结果表明:当Na2SO3投加量为0.5 g/L,还原反应pH值为4,还原反应时间6 min,Cr6+可完全转化为Cr3+.Cr3+在pH值为8时沉淀最完全,出水总铬浓度可从100 mg/L降到0.5 mg/L以下.除铬后,当MnO2投加量为25 g/L,废水pH值为9,曝气10 min,出水Mn2+浓度可从1 000 mg/L降到0.4 mg/L以下.通过以上处理出水总铬和总锰均达到我国《污水综合排放标准(GB8978-1996)》一级要求.   相似文献   

8.
抚顺新抚钢厂为提高经济效益,1988年初决定扩大合金钢品种,其中有55SiMaVB。但因钒铁紧缺,售价暴涨,生产受到影响。为此采用钒渣代钒铁直接还原冶炼55SiMnVB钢。通过试验取得了显著效果:钒渣平均收得率88.45%两年来累计生产合格钢锭11926.8t,合格率达99.60%,钢渣平均单耗17.2kg/t  相似文献   

9.
钒渣生产五氧化二钒过程中产生的废水含有少量钒和铬,应予回收,使之符合排放废水的标准。处理该废水后得到的钒、铬渣含V10—18%,Cr18—22%。根据钒铬电位,采用选择性氧化和碱浸湿渣法,对分离钒、铬很有效,含钒溶液经净化和沉淀后制成V_2O_5,铬渣另作它用。  相似文献   

10.
对四氯化钛精致尾渣进行酸浸,考察液固比、盐酸用量、浸出温度、浸出时间对钒浸出率的影响,结果表明,在液固比2∶1、38%盐酸与水的体积比1.1∶1、浸出温度40℃、浸出时间30min的条件下,钒浸出率可以达到97.1%。酸浸液调节pH后,在沉钒温度40℃、酸浸液钒初始浓度小于6g/L、终点pH1.4~2.0、氧化剂用量为理论量的5~6倍的条件下,钒沉淀率达到95.4%,沉淀物550℃煅烧3h后可以得到钒酸铁。沉钒渣和废水中和渣满足GB18599—2001中一般工业固体废物永久堆放的要求。  相似文献   

11.
以钒渣氧化钠化焙烧-水浸后的钒液为原料,进行间断式酸性铵盐沉钒试验。讨论沉钒原液浓度、pH值、温度、氯化铵加入量、沉钒时间、钒液杂质(P/Si)等对钒酸铵质量的影响。试验结果表明,采用酸性铵盐沉钒的最佳工艺条件为:沉钒原液浓度控制在20~21g/L、原液pH值8-9、P含量15mg/L、Si含量500mg/L、沉钒初始温度控制在40~50℃,最终温度控制在95~100℃、加铵系数0.5~0.6、沉钒沸腾时间20~30min。在此条件下可制得品位高、杂质含量低的钒酸铵。  相似文献   

12.
以钒渣氧化钠化焙烧—水浸后的钒液为原料,进行间断式酸性铵盐沉钒试验。讨论了沉淀原液浓度、pH值、温度、氯化铵加入量、沉钒时间、钒液杂质(P/Si)等对钒酸铵质量的影响。试验结果证明,采用酸性铵盐沉钒的最佳工艺条件:沉淀原液浓度20~21 g/L、pH值8~9、磷含量<15 mg/L、硅含量<500 mg/L、沉钒初始温度控制在40~50℃,最终温度控制在95~100℃、加铵系数0.5~0.6、沉淀沸腾时间20~30 min,可制得品位高、杂质含量低的钒酸铵。  相似文献   

13.
钒酸钙冶炼中钒铁工艺研究   总被引:2,自引:0,他引:2  
王永钢 《铁合金》2009,40(5):18-20
以钒酸钙为原料,将钒酸钙粉末熔片后,采用铝热法冶炼中钒铁,可获得合格的钒铁产品。钒酸钙冶炼钒铁过程平稳、可控,回收率可达97%以上,同时因钒酸钙制取时不产生难处理的高氨氮废水,相较于传统的氧化钒-钒铁的生产工艺路线有较大的环保优势。  相似文献   

14.
采用还原-中和工艺处理氧化钒废水,处理规模为120 m~3/h。废水呈酸性,主要含有钒、铬、镁、锰、钙等污染物,具有酸性强、成分复杂、水质变化大、毒性大、可生化性差等特点,在进水SS 2000~4000 mg/L、V~(5+)100~400 mg/L、Cr~(6+)100~200 mg/L、Mg~(2+)1000~3000 mg/L、Mn~(2+)10000~15000 mg/L、Ca~(2+)500~1500 mg/L、SO_4~(2-)30000~40000 mg/L、p H值2.0~2.5、温度70~80℃时,对应其出水达到SS 100~400 mg/L、V~(5+)0.01~0.1mg/L、Cr~(6+)0.01~0.1 mg/L、Mg~(2+)1000~2000 mg/L、Mn~(2+)1000~2000 mg/L、SO_4~(2-)15000~25000 mg/L、p H值4~6的回用指标要求。该工艺流程简单,设备自动化程度高,初沉、还原、中和、沉淀、过滤、调酸等是该处理工艺的核心,保证了回用水水质,具有良好的经济及环境效益。  相似文献   

15.
邓成虎 《铜业工程》2015,(2):18-21,60
为了确保废水稳定达标排放,通过技术改造,在原有冶炼废水处理设施上,采用TN-CMF技术对含铜、砷等金属和高浓度氯离子、硫酸根离子贵金属冶炼废水进行深度处理。生产实践表明:采用TN-CMF技术处理后,废水中重金属铜、砷去除明显,出水中铜浓度为0.21~0.32mg/L,平均为0.27mg/L;砷浓度为0.11~0.28mg/L,平均为0.21mg/L;p H为7.6~8.4;铅、锌、镉、镍等较低浓度污染物处理后浓度均小于0.05mg/L;出水中重金属残余浓度稳定达到《铜、钴、镍工业污染物排放标准》(GB25467-2010)的限值;废水渣渣量小,成分简单,进行有价金属回收利用的价值高;工艺废水中铜和微量的金、银等稀贵金属得到有效捕收。  相似文献   

16.
针对甘肃某金矿含氰贫液特点,分别采用因科法和碱氯法处理,并对试验条件进行了优化。试验结果表明:因科法去除氰化物效果较好,在含氰贫液p H值11、焦亚硫酸钠用量1 800 mg/L、不充气搅拌1.5 h条件下,处理后贫液中总氰化合物质量浓度由79.59 mg/L降至0.47 mg/L,低于国家废水排放标准规定的0.5 mg/L,处理后尾渣毒性浸出指标均达到国家尾矿库处置污染控制要求。含氰贫液循环利用于浸出流程不影响金的浸出。  相似文献   

17.
吕岩  那贤昭  齐渊洪 《炼钢》2015,31(2):62-66
由于电炉不锈钢的冶炼工序特点,渣中铬含量较高,存在Cr6+浸出风险。在电炉不锈钢冶炼末期,利用硅热法对渣液层进行在线还原解毒,可有效降低渣中重金属氧化物含量,渣中w(Cr2O3)从6.10%降至0.79%,还原解毒率最大可达到87.1%。解毒后电炉渣中作为Cr6+主要赋存相的钙铬石(Ca Cr O4)消失。经毒性浸出检测,其总铬浸出量降至0.08 mg/L,Cr6+浸出量降至0.01 mg/L以下,均明显低于国家堆存限值和利用限值,可实现不锈钢EAF渣的安全排放及后续资源化利用。  相似文献   

18.
针对钙化焙烧熟料硫酸浸出-铵盐沉钒生产清洁钒工艺中循环利用的回用废水pH值、悬浮物SS、Mn~(2+)、NH_4~+浓度变化较大,浸出过滤洗涤生产现场出现浸出剂沉钒、残渣沉钒等现象,造成浸出生产不顺行,钒收率偏低的突出问题,以生产现场回用废水及钙化焙烧熟料为原料,采用硫酸浸出的方法对不同的回用废水pH值、悬浮物SS、Mn~(2+)、NH_4~+浓度对钙化焙烧熟料酸浸效果的影响进行了研究,并且将达到要求的回用废水与去离子水酸浸及过滤洗涤效果进行了对比研究。研究结果表明,随着回用废水pH值的增大,酸浸残渣钒含量减小,钒转浸率增大;随着悬浮物SS、Mn~(2+)、NH_4~+浓度的增大,酸浸残渣钒含量增大,钒转浸率急剧下降;回用废水pH值、悬浮物SS、Mn~(2+)、NH_4~+浓度分别为pH=6.5~7.5,Mn~(2+)≤3 g/L,SS≤30 g/L,NH_4~+≤25 g/L时,在与去离子水酸浸与过滤洗涤对比中,效果相近,酸浸残渣钒含量可降至1.2%,钒转浸率可达到85%。试验结果为钙化焙烧熟料硫酸浸出-铵盐沉钒生产清洁钒工艺中工业化废水处理循环利用提供了酸浸回用废水工艺控制要求和数据参考。  相似文献   

19.
王英 《钢铁钒钛》2012,33(3):20-23
根据酸性铵盐沉钒废水的特性,提出其在沉淀设备冲淋、尾渣洗涤和熟料浸出三个方面进行循环利用的途径,并开展相关试验。结果表明:APV在pH值为2.5~3.5的水溶液中溶解的V浓度低于0.15 g/L,利用酸性铵盐沉钒废水作沉淀设备冲淋水能有效解决APV返溶问题,从而减少钒损失。当洗涤温度大于90℃,液固比超过2.5,洗涤时间达到45 min以上,洗涤次数超过3次时,使用酸性铵盐沉钒废水洗涤尾渣的效果优于生产水。用沉钒废水浸出焙烧熟料是完全可行的,其浸出液具有除磷优势。  相似文献   

20.
 在低铬铸铁改性处理中,VS+Ti+Zn复合孕育剂起着良好的孕育处理作用。从热力学角度分析了钒渣作为炼铁工业副产品得到二次利用的可行性,并讨论了冶金综合处理工艺和冶金物化条件对充分发挥钒渣复合孕育效果的作用。结果表明,钒渣复合孕育剂可有效地细化晶粒,改变碳化物形态;钒渣作为一种钢铁冶炼副产品,取代钒铁具有较大的资源利用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号