首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas hollow tungsten arc (GHTA) welding experiments on aluminum pipe were carried out in a simulated space environment using an aircraft. A vacuum chamber and welding machine for GHTA welding test were placed in the cabin of the aircraft and the 10? 2 G gravity environment was produced by a parabolic flight of the aircraft. The square butt welding joints with non root gap on aluminum pipe were made by orbital welding in the vacuum chamber without wire filler metal using DC or DC-pulsed power supply under the 10? 2 and 1 G gravity conditions. The welding phenomenon during the aluminum GHTA welding recorded in the high-speed video image was analysed and also the macrostructure and mechanical properties of butt weld joints were investigated. The welding experiments under simulated space environment showed that the DC-pulsed GHTA process could make the welding joints without the weld defects such as a lack of fusion, oxide film inclusion and spattering, though throat thickness decreased by the impulsive arc pressure of pulsed current. It was also clarified that the arc discharge phenomenon and melting characteristic at the molten pool surface during the DC-pulsed GHTA welding were insensitive to the gravity condition. However, the sagging weld metal made at 1 G gravity condition increases a little more than that welded under the 10? 2 G gravity condition.  相似文献   

2.
Abstract

A feasibility study has been conducted to determine whether gas hollow tungsten arc (GHTA) welding can be used for welding in space. As described in a previous paper by the present authors, the GHTA method has been tested in a simulated space environment using aircraft. The test result shows that the method is most promising as a welding process in space. In the present paper, some fundamental characteristics of the GHTA in a vacuum chamber, such as discharge characteristics and plasma properties, have been elucidated and the results of melting tests on stainless steel plate using the GHTA method have been compared with those obtained via a conventional gas tungsten arc method under atmospheric pressure.  相似文献   

3.
Abstract

The problem of sidewall incomplete fusion in narrow gap tungsten inert gas (TIG) welding could be well solved when the proper magnetic field was added. However, the various tungsten electrode tips seriously affect the distribution of arc pressure and the quality of welding seams. In addition, it is a 350 A GTA, as this is in a regime in which finger penetration is common. This paper studies the distribution of arc pressure of five different styles of tungsten electrode tips: 30° circular cone, 60° circular cone, 60° circular cone with truncated cone of 2 mm diameter, terrace of 2×2 mm and terrace of 2×0·8 mm with the same welding parameters. The character of arc pressure is verified by assaying the seam cross-section under the controlling magnetic field condition in narrow gap welding. The measuring equipment that we designed independently is creative and applicative in narrow gap TIG welding under magnetic fields.  相似文献   

4.
雷正  朱宗涛  李远星  陈辉 《焊接学报》2021,34(9):9-14, 27
建立了内径2 mm的空心钨极TIG焊电弧数值模型,用Fluent软件用户自定义函数(UDF)功能加载了氩气电导率、动量方程和能量方程的源项,计算了稳态下焊接电流为60 A时电弧的温度场、流场以及电弧压力,并与相同条件下实心钨极TIG焊电弧作了对比. 结果表明,空心钨极TIG焊电弧呈钟罩形,空心钨极圆环放电和钨极中心气流的冷却作用使得电弧温度分布云图顶部下凹;电弧等离子体在钨极下方运动速度较快,阳极表面电弧压力呈柱状分布,弧柱区空间压力分布比较均匀;与相同电流条件下TIG焊相比,空心钨极TIG焊电弧峰值温度降低17.3%,钨极下方2 mm位置处峰值温度降低27%,等离子体最大运动速度降低40%,电弧压力峰值降低57%,堆焊焊缝熔宽增加30%,熔深减小27.9%.  相似文献   

5.
电弧热力行为是影响液态金属流动,调控焊接质量的关键要素.利用高速摄像与数值模拟相结合的研究方法,系统分析了空心钨极与实心两种电极特征对电弧热力分布特征的影响.结果表明,焊接电流为350 A时,实心钨极焊缝呈现出深而窄的焊缝成形特征,空心钨极焊缝呈现出浅而宽的焊缝成形特征;距试板表面1 mm,实心钨极与空心钨极电弧沿水平方向的温度场和压力场均呈典型高斯分布特征,中心位置处空心钨极电弧的温度值和压力值分别为实心钨极的61.9%和23.5%;中轴线上实心钨极电弧压力分布呈U形特征,空心钨极电弧压力分布呈N形特征;构建的电弧与熔池强耦合分析模型与实际情况之间具有较好的一致性,可实现对电弧和熔池热力行为的分析与预测.  相似文献   

6.
The hollow cathode arc (HCA) was developed as a plasma source for low-pressure applications in the 1960s, since when it has been variously researched to clarify its underlying mechanism.1, 2 When arranged to incorporate a relatively high arc current, HCA can also be used as a welding heat source.3-5 Through being a plasma source in low-pressure environments, HCA has further attracted attention as a welding heat source for use in space.6, 7 Through providing a degree of base metal fusion incommensurably greater than that obtainable with a conventional GTA (gas tungsten arc) heat source at atmospheric pressure, HCA is also regarded as being effective for industrial applications in low-pressure terrestrial environments.8  相似文献   

7.
The effect of welding parameters on energy utilisation efficiency in laser–gas tungsten arc (GTA) hybrid welding process is investigated. Then, optimum butt joints are made by laser welding, GTA welding and laser–GTA hybrid welding, and the energy consumption in each process is calculated and compared. Both plasma and keyhole behaviours are studied. Results indicate that the parameter Dla greatly affects the energy utilisation efficiency in hybrid welding. The reason is that Dla determines keyhole behaviour and laser induced plasma, and these determine the coupling discharge of laser induced and GTA plasmas. Compared with laser and GTA welding, hybrid welding is more energy efficient.  相似文献   

8.
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.  相似文献   

9.
Abstract

Tungsten inert gas (TIG) welding is most frequently used for arc study because it is clean and easy to control welding factor. Many researchers have been focused on the plasma stream to find out the relationship between vertex angle and penetration of the tungsten electrode in TIG welding. Moreover, researchers studied the characteristics of vertex angle and arc pressure and heat flux distribution of the tungsten electrode. In addition, they have carried out factors that have influence on the behaviour of the molten pool. Previous studies assumed that arc pressure was dominant for the force that physically works on the surface of the molten pool, neglecting the shield gas pressure. In addition, they have been focused on the protection of molten weld pool from exposure to the atmosphere. The object of this study is to investigate the effect of shield gas pressure on the surface of the molten pool by measuring the distribution of arc pressure and shield gas pressure compared with arc physical results of previous researches. In this study, we measured the distribution of arc pressure and shield gas pressure on the water cooled copper plate by changing the setting shield gas pressure and shield gas cup inside diameter. As the setting shield gas pressure increased and the shield gas cup diameter decreased, the arc radius got narrower due to the thermal pinch effect. Maximum arc pressure was slightly affected by setting the shield gas pressure and shield gas cup diameter. However, the shield gas pressure on arc surroundings was raised with the increasing setting shield gas pressure and the decreasing gas cup inside diameter. Orbital welding with convex back bead was successfully performed through molten pool control by shield gas pressure adjustment.  相似文献   

10.
有氧条件下氩弧焊钨电极表面的烧蚀   总被引:2,自引:0,他引:2  
研究了在有氧条件下钨极氩弧焊的钨电极表面的烧蚀.研究结果表明,有氧条件下钨电极的钨基体烧蚀大大增加,主要原因是在一定温度范围内发生了氧和钨的反应;添加氧化钍的烧蚀主要是由于氧化钍的熔化和蒸发,采用纳米尺寸氧化钍的电极,氧化钍的烧蚀明显减轻,有助于提高钨电极的使用寿命.采用纳米氧化物添加钨电极以及保证保护惰性气体的纯度和流量可以降低钨电极的烧蚀,保证焊接质量.  相似文献   

11.
为了同时实现钨极惰性气体保护焊(GTAW)中弧长控制和焊缝跟踪,文中提出一种基于钨极倒影的焊缝位置检测新方法.该方法将所研制的视觉传感器固接于焊枪上,从侧前方观测熔池,拍摄得到的图像包含有钨极前端、熔池前部、焊缝棱边以及钨极在熔池中所成的像等元素.通过所提出的基于实际钨极中心线约束的弧长算法和基于熔池水平约束的钨极左右偏差算法,计算得到焊缝相对钨极的三维位置,以此为控制量可以实现三维精密焊缝跟踪.结果表明,该方法是有效的,检测精度达到±0.1mm,满足精密焊接应用要求.  相似文献   

12.
An experimental method is suggested to obtain the effective arc radii for various welding conditions in vacuum gas hollow tungsten arc welding. The irradiance distribution of welding arc next above the anode workpiece is obtained by applying Abel inversion algorithm to the CCD arc image, and then used to determine the distribution of arc heat flux, arc pressure and current density from the physical relations of arc irradiance, temperature and current density in gas tungsten arc welding. The resultant arc models are then adopted to simulate the gas hollow tungsten arc welding process for various gas flow rates.  相似文献   

13.
为降低现有磁力驱动泵隔离套的加工成本并提高生产效率,设计了一套便于加工、节约成本和时间的焊接工艺装备。利用该装备研究了不锈钢钨极氩弧焊焊接时,焊接电流、氩气流量及钨极锥角等工艺参数对焊缝成型的影响,并得出相关焊接数据。研究结果表明,通过调节各工艺参数及利用各参数间的相互配合,焊接电流为110 A,氩气流量为10 L/min,钨极锥角取45°时,焊缝成型效果较为理想。  相似文献   

14.
空心钨极TIG焊电弧特性数值模拟   总被引:3,自引:3,他引:0  
建立了内径2 mm的空心钨极TIG焊电弧数值模型,用Fluent软件用户自定义函数(UDF)功能加载了氩气电导率、动量方程和能量方程的源项,计算了稳态下焊接电流为60 A时电弧的温度场、流场以及电弧压力,并与相同条件下实心钨极TIG焊电弧作了对比. 结果表明,空心钨极TIG焊电弧呈钟罩形,空心钨极圆环放电和钨极中心气流的冷却作用使得电弧温度分布云图顶部下凹;电弧等离子体在钨极下方运动速度较快,阳极表面电弧压力呈柱状分布,弧柱区空间压力分布比较均匀;与相同电流条件下TIG焊相比,空心钨极TIG焊电弧峰值温度降低17.3%,钨极下方2 mm位置处峰值温度降低27%,等离子体最大运动速度降低40%,电弧压力峰值降低57%,堆焊焊缝熔宽增加30%,熔深减小27.9%.  相似文献   

15.
以空气为舱内加压气体的钨极氩弧焊接   总被引:2,自引:1,他引:1       下载免费PDF全文
研究了1~700 kPa空气作用下的钨极氩弧焊接.气体爆炸试验表明,压缩空气虽然不爆炸但是显著助燃,高压焊接试验舱舱内设备需要采取抗燃措施.采用较大的氩气流量,可以实现高压空气之下良好的电弧和熔池保护.自动焊机用于舱内焊接时,解决了线缆密封、摄像系统适应性等特殊问题,此外,以弧长代替电压作为控制变量消除了焊接电缆影响.16Mn钢平板焊接试验证明,虽然不同空气压力、不同位置实现单面焊自由双面成形的工艺参数明显不同,但是,采用脉冲焊接均可以获得性能优良的焊接接头.  相似文献   

16.
不锈钢电弧辅助活性TIG焊   总被引:6,自引:2,他引:4       下载免费PDF全文
黄勇  樊丁  林涛  雒焕胜 《焊接学报》2009,30(10):1-4
针对不锈钢,提出了一种新型活性YIG焊方法--电弧辅助活性TIG焊,即AA-TIG焊(arc assisted activating TIG welding).该焊接方法通过在正常TIG焊前以活性混合气体作为保护气体,采用小电流钨极电弧预熔待焊焊道表面,可使熔深显著增加,焊接效率大大提高,而且具有可全自动化焊接和工艺可重复性好等优点.分别采用O2+Ar,CO2+Ar,空气作为小电流钨极电弧的保护气体进行了单弧AA-TIG焊.与传统TIG焊比较,发现O2+Ar,CO2+Ar和空气都可显著增加熔深,减小熔宽,焊缝表面成形良好.采用CO2+Ar作为活性混合保护气体进行双弧AA-TIG焊,焊缝成形良好,熔深显著增加.熔深随着焊枪间距减小而增大.  相似文献   

17.
针对耦合电弧AA-TIG焊接法(arc assisted activating TIG welding),采用基于不锈钢作阳极的静态小孔法对其电弧压力进行了测量,研究了主要工艺参数对电弧压力分布的影响规律.与常规钨极氩弧焊相比,在相同条件下耦合电弧AA-TIG焊的电弧压力峰值明显降低,并随着焊接电流的减小、钨极间距的增大、弧长的增大、辅助电弧中氧含量的减小而减小.在2mm钨极间距时,电弧压力服从高斯分布,随着钨极间距的增大电弧压力向双峰分布过渡.  相似文献   

18.
变极性TIG焊电弧压力分析   总被引:1,自引:1,他引:0       下载免费PDF全文
程林  胡绳荪  王志江 《焊接学报》2014,35(11):101-104
采用压力传感器获取不同条件下的变极性钨极氩弧焊(VPTIG)横焊时的电弧压力,研究分析了电弧压力在径向上的分布规律,对比研究了直流TIG焊、反极性期间占5%,15%的变极性TIG中心电弧压力.结果表明,变极性TIG焊电弧压力的径向分布属于双面指数分布.焊接电流在100~140 A范围内,在电流均值相等的情况下,由于反极性期间电子发射机制和电弧发散等原因,随着一个周期内钨极为正半波的时间比例增加,电弧压力逐渐减小,且焊接电弧积分力与电流的平方近似成正比例关系.  相似文献   

19.
空心钨极同轴填丝焊接焊丝与电弧(丝-弧)交互过程是决定焊接质量的关键.首先利用高速摄像观察分析了空心钨极电弧与实心钨极电弧形态,及其对焊缝成形特征的影响规律,然后构建了熔丝过程受力模型,系统分析了同轴填丝焊接过程中熔滴形成及过渡过程动力学特征.结果表明,空心钨极电弧表面辐照区域大于实心钨极,在大电流工艺条件下焊缝成形稳定;熔滴形成阶段,焊丝末端熔滴处于静力平衡状态,在较大表面张力作用下,无法自发从焊丝末端直接过渡进入熔池;熔滴过渡阶段,部分电流从焊丝流过,产生电磁收缩力,引起焊丝与熔池之间的熔滴摆动.  相似文献   

20.
双钨极氩弧焊(twin-electrode TIG, T-TIG)的耦合电弧是由设置在同一个焊枪中的两个相互绝缘的钨极各自产生的电弧耦合而成的.这个耦合电弧在物理特性上不同于传统单钨极TIG电弧.以试验为基础,分析了耦合电弧的电弧压力特性,并对比单钨极电弧就焊接电流、电弧弧长、钨极间距和钨极形状对耦合电弧压力分布的影响进行了研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号