首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
2.
The major immediate-early (MIE) gene products of human cytomegalovirus (HCMV) are nuclear phosphoproteins that are thought to play key roles in initiating lytic cycle gene regulation pathways. We have examined the intranuclear localization pattern of both the IE1 and IE2 proteins in virus-infected and DNA-transfected cells. When HCMV-infected human diploid fibroblast (HF) cells were stained with specific monoclonal antibodies, IE1 localized as a mixture of nuclear diffuse and punctate patterns at very early times (2 h) but changed to an exclusively nuclear diffuse pattern at later times. In contrast, IE2 was distributed predominantly in nuclear punctate structures continuously from 2 to at least 12 h after infection. These punctate structures resembled the preexisting PML-associated nuclear bodies (ND10 or PML oncogenic domains [PODs]) that are disrupted and dispersed by the IE110 protein as a very early event in herpes simplex virus (HSV) infection. However, HCMV differed from HSV by leading instead to a change in both the PML and SP100 protein distribution from punctate bodies to uniform diffuse patterns, a process that was complete in 50% of the cells at 2 h and in 90% of the cells by 4 h after infection. Confocal double-label indirect immunofluorescence assay analysis confirmed that both IE1 and IE2 colocalized transiently with PML in punctate bodies at very early times after infection. In transient expression assays, introduction of IE1-encoding plasmid DNA alone into Vero or HF cells produced the typical total redistribution of PML into a uniform nuclear diffuse pattern together with the IE1 protein, whereas introduction of IE2-encoding plasmid DNA alone resulted in stable colocalization of the IE2 protein with PML in the PODs. A truncated mutant form of IE1 gave large nuclear aggregates and failed to redistribute PML, and similarly a deleted mutant form of IE2 failed to colocalize with the punctate PML bodies, confirming the specificity of these effects. Furthermore, both Vero and U373 cell lines constitutively expressing IE1 also showed total PML relocalization together with the IE1 protein into a nuclear diffuse pattern, although a very small percentage of the cells which failed to express IE1 reverted to a punctate PML pattern. Finally, the PML redistribution activity of IE1 and the direct association of IE2 with PML punctate bodies were both confirmed by infection with E1A-negative recombinant adenovirus vectors expressing either IE1 or IE2 alone. These results confirm that transient colocalization with and disruption of PML-associated nuclear bodies by IE1 and continuous targeting to PML-associated nuclear bodies by IE2 are intrinsic properties of these two MIE regulatory proteins, which we suggest may represent critical initial events for efficient lytic cycle infection by HCMV.  相似文献   

3.
4.
The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.  相似文献   

5.
The adenovirus type 5 (Ad5) early 1B 55-kDa protein (E1B-55kDa) is a multifunctional phosphoprotein that regulates viral DNA replication and nucleocytoplasmic RNA transport in lytically infected cells. In addition, E1B-55kDa provides functions required for complete oncogenic transformation of rodent cells in cooperation with the E1A proteins. Using the far-Western technique, we have isolated human genes encoding E1B-55kDa-associated proteins (E1B-APs). The E1B-AP5 gene encodes a novel nuclear RNA-binding protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) family that is highly related to hnRNP-U/SAF-A. Immunoprecipitation experiments indicate that two distinct segments in the 55-kDa polypeptide which partly overlap regions responsible for p53 binding are required for complex formation with E1B-AP5 in Ad-infected cells and that this protein interaction is modulated by the adenovirus E4orf6 protein. Expression of E1B-AP5 efficiently interferes with Ad5 E1A/E1B-mediated transformation of primary rat cells. Furthermore, stable expression of E1B-AP5 in Ad-infected cells overcomes the E1B-dependent inhibition of cytoplasmic host mRNA accumulation. These data suggest that E1B-AP5 might play a role in RNA transport and that this function is modulated by E1B-55kDa in Ad-infected cells.  相似文献   

6.
7.
8.
9.
The adenovirus type 5 243R E1A protein induces p53-dependent apoptosis in the absence of the 19- and 55-kDa E1B polypeptides. This effect appears to result from an accumulation of p53 protein and is unrelated to expression of E1B products. We now report that in the presence of the E1B 55-kDa polypeptide, the 289R E1A protein does not induce such p53 accumulation and, in fact, is able to block that induced by E1A 243R. This inhibition also requires the 289R-dependent transactivation of E4orf6 expression. E4orf6 is known to form complexes with the E1B 55-kDa protein and to function both in the transport and stabilization of viral mRNA and in shutoff of host cell protein synthesis. We demonstrated that the block in p53 accumulation is not due to the generalized shutoff of host cell metabolism. Rather, it appears to result from a mechanism targeted specifically to p53, most likely involving a decrease in the stability of p53 protein. The E1B 55-kDa protein is known to interact with both E4orf6 and p53, and as demonstrated recently by others, we showed that E4orf6 also binds directly to p53. Thus, multiple interactions between all three proteins may regulate p53 stability, resulting in the maintenance of low levels of p53 following virus infection.  相似文献   

10.
Our previous studies demonstrated that the promyelocytic leukemia gene, PML which involved in the 15;17 translocation in acute promyelocytic leukemia (APL) is a growth and transformation suppressor. In this study, recombinant PML adenovirus, Ad-PML was constructed and used to infect human breast cancer cells in vitro and in vivo, the anti-oncogenic function of PML and its mechanism of growth suppressing effect in breast cancer cells were examined. We showed that Ad-PML effectively infected the MCF-7 and SK-BR-3 cells. A high level of PML protein was expressed within 24 h post-infection and a detectable level remained at day 16. Ad-PML significantly suppressed the growth rate, clonogenicity, and tumorigenicity of breast cancer cells. Intratumoral injections of MCF-7-induced tumors by high titer Ad-PML suppressed tumor growth in nude mice by about 80%. The injection sites expressed high level of PML and associated with a massive apoptotic cell death. To elucidate the molecular mechanism of PML's growth suppressing function, we examined the effect of Ad-PML on cell cycle distribution in MCF-7 and SK-BR-3 cells. We found that Ad-PML infection caused a cell cycle arrest at the G1 phase. We further showed that G1 arrest of MCF-7 cells is associated with a significant decrease in cyclin D1 and CDK2. An increased expression of p53, p21 and cyclin E was found. The Rb protein became predominantly hypophosphorylated 48 h post-infection. These findings indicate that PML exerts its growth suppressing effects by modulating several key G1 regulatory proteins. Our study provides important insight into the mechanism of tumor suppressing function of PML and suggests a potential application of Ad-PML in human cancer gene therapy.  相似文献   

11.
In the absence of E1B, the 289-amino acid product of human adenovirus type 5 13S E1A induces p53-independent apoptosis by a mechanism that requires viral E4 gene products (Marcellus, R.C., J.C. Teodoro, T. Wu, D.E. Brough, G. Ketner, G.C. Shore, and P.E. Branton. 1996. J. Virol. 70:6207-6215) and involves a mechanism that includes activation of caspases (Boulakia, C.A., G. Chen, F.W. Ng, J. G. Teodoro, P.E. Branton, D.W. Nicholson, G.G. Poirier, and G.C. Shore. 1996. Oncogene. 12:529-535). Here, we show that one of the E4 products, E4orf4, is highly toxic upon expression in rodent cells regardless of the p53 status, and that this cytotoxicity is significantly overcome by coexpression with either Bcl-2 or Bcl-XL. Conditional expression of E4orf4 induces a cell death process that is characterized by apoptotic hallmark features, such as externalization of phosphatidylserine, loss of mitochondrial membrane potential, cytoplasmic vacuolation, condensation of chromatin, and internucleosomal DNA degradation. However, the wide-spectrum inhibitor of caspases, tetrapeptide zVAD-fmk, does not affect any of these apoptogenic manifestations, and does not alter the kinetics of E4orf4-induced cell death. Moreover, E4orf4 expression does not result in activation of the downstream effector caspase common to most apoptosis-inducing events, caspase-3 (CPP32). We conclude, therefore, that in the absence of E1A, E4orf4 is sufficient by itself to trigger a p53-independent apoptosis pathway that may operate independently of the known zVAD-inhibitable caspases, and that may involve an as yet uncharacterized mechanism.  相似文献   

12.
The activation of cytotoxic T lymphocytes (CTLs) to cells infected with adenovirus vectors contributes to problems of inflammation and transient gene expression that attend their use in gene therapy. The goal of this study was to identify in a murine model of liver gene therapy the proteins that provide targets to CTLs and to characterize the major histocompatibility complex (MHC) class I restricting elements. Mice of different MHC haplotypes were infected with an E1-deleted adenovirus expressing human alkaline phosphatase (ALP) or beta-galactosidase as a reporter protein, and splenocytes were harvested for in vitro CTL assays to aid in the characterization of CTL epitopes. A library of vaccinia viruses was created to express individual viral open reading frames, as well as the ALP and lacZ transgenes. The MHC haplotype had a dramatic impact on the distribution of CTL targets: in C57BL/6 mice, the hexon protein presented by both H-2Kb and H2Db was dominant, and in C3H mice, H-2Dk-restricted presentation of ALP was dominant. Adoptive transfer of CTLs specific for various adenovirus proteins or transgene products into either Rag-I or C3H-scid mice infected previously with an E1-deleted adenovirus verified the in vivo relevance of the adenovirus-specific CTL targets identified in vitro. The results of these experiments illustrate the impact of lr gene control on the response to gene therapy with adenovirus vectors and suggest that the efficacy of therapy with adenovirus vectors may exhibit considerable heterogeneity when applied in human populations.  相似文献   

13.
14.
15.
WT1 encodes a tumor suppressor that is expressed in cells of the developing kidney and is inactivated in Wilms tumor, a pediatric kidney cancer. The adenovirus E1B 55K gene product contributes to the transformation of primary baby rat kidney (BRK) cells by binding and inactivating the product of the p53 tumor suppressor. We have previously demonstrated that WT1 and p53 are present within a protein complex in vivo. We now show that WT1 is physically associated with E1B 55K in adenovirus-transformed cells, an interaction that is mediated by the first two zinc fingers of WT1. Immunodepletion of p53 abrogates the coimmunoprecipitation of E1B 55K and WT1, consistent with the presence of a trimeric protein complex containing these three proteins. In the presence of E1B 55K, WT1 which is normally localized in the nucleus, is retained within a very high molecular weight complex and sequestered in the characteristic perinuclear cytoplasmic body that contains E1B 55K and p53. Expression of E1B 55K in osteosarcoma cells that undergo apoptosis following expression of WT1 inhibits WT1-mediated cell death. We conclude that E1B 55K may target WT1 along with p53, resulting in the functional inactivation of both tumor suppressor gene products by this viral oncoprotein.  相似文献   

16.
Two mutants containing large deletions in the E4 region of the adenovirus genome H5dl366 (91.9-98.3 map units) and H2dl808 (93.0-97.1 map units) were used to investigate the role of E4 genes in adenovirus DNA synthesis. Infection of KB human epidermoid carcinoma cells with either mutant resulted in production of large concatemers of viral DNA. Only monomer viral genome forms were produced, however, when mutants infected W162 cells, a monkey kidney cell line transformed with and expressing the E4 genes. Diffusible E4 gene products, therefore, complement the E4 mutant phenotype. The viral DNA concatemers produced in dl366- and dl808-infected KB cells did not have any specific orientation of monomer joining: the junctions consisted of head-to-head, head-to-tail, and tail-to-tail joints. The junctions were covalently linked molecules, but molecules were not precisely joined, and restriction enzyme maps revealed a heterogeneous size distribution of junction fragments. A series of mutants that disrupted single E4 open reading frames (ORFs) was also studied: none showed phenotypes similar to that of dl366 or dl808. Mutants containing defects in both ORF3 and ORF6, however, manifested the concatemer phenotype, indicating redundancy in genes preventing concatemer formation. These data suggest that the E4 ORFs 3 and 6 express functions critical for regulation of viral DNA replication and that concatemer intermediates may exist during adenovirus DNA synthesis.  相似文献   

17.
First-generation adenovirus (Ad) vectors that had been rendered replication defective by removal of the E1 region of the viral genome (DeltaE1) or lacking the Ad E3 region in addition to E1 sequences (DeltaE1DeltaE3) induced G2 cell cycle arrest and inhibited traverse across G1/S in primary and immortalized human bronchial epithelial cells. Cell cycle arrest was independent of the cDNA contained in the expression cassette and was associated with the inappropriate expression and increase in cyclin A, cyclin B1, cyclin D, and cyclin-dependent kinase p34(cdc2) protein levels. In some instances, infection with DeltaE1 or DeltaE1 DeltaE3 Ad vectors produced aneuploid DNA histogram patterns and induced polyploidization as a result of successive rounds of cell division without mitosis. Cell cycle arrest was absent in cells infected with a second-generation DeltaE1Ad vector in which all of the early region E4 except the sixth open reading frame was also deleted. Consequently, E4 viral gene products present in DeltaE1 or DeltaE1 DeltaE3 Ad vectors induce G2 growth arrest, which may pose new and unintended consequences for human gene transfer and gene therapy.  相似文献   

18.
The E1A oncoproteins of adenovirus type 5 are potent inducers of apoptotic cell death. To manifest growth promoting and transforming properties, therefore, E1A requires the co-expression of a suppressor of apoptosis. During normal viral infection, this function is provided by the E1B 19 kDa protein. However, the cellular suppressor Bcl-2 can substitute for 19K during infection, and both proteins can effectively cooperate with E1A to facilitate transformation of primary cells in culture. How E1A induces apoptosis and at what point(s) on this pathway Bcl-2 and E1B 19K act are not presently known. Here, we demonstrate that E1A-induced apoptosis is accompanied by specific endo-proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), an event that is linked to the Ced-3/ICE apoptotic pathway in other systems. PARP cleavage was also observed in p53-null cells infected with 19K- virus expressing 13S E1A. In addition to PARP cleavage, expression of E1A caused processing of the zymogen form of CPP32, a Ced-3/ICE protease that cleaves PARP and is required for apoptosis in mammalian cells. These events were prevented when E1A was co-expressed with E1B 19K or BCL-2, which places these suppressors of apoptosis either at or upstream of processing of pro-CPP32.  相似文献   

19.
Our previous studies demonstrated that the promyelocytic leukemia gene, PML, encodes a growth and transformation suppressor. Overexpression of PML inhibits cancer cell growth in vitro and in vivo. In this study, we further explored the possibility of applying PML as a potential agent for developing prostate cancer gene therapy using an adenovirus delivery system. We have constructed and produced the recombinant PML-adenovirus, Ad-PML, in which the full-length PML cDNA is driven by the strong cytomegalovirus promoter. In LNCaP, DU145, and PC-3 prostate cancer cell lines, an infection efficiency of 90% can be achieved at a concentration of 2, 10, and 100 multiplicity of infection (MOI), respectively. Western blotting and immunofluorescence staining demonstrated that the AD-PML-infected cells expressed a high level of PML protein. The protein expression peaked at days 3-4 postinfection, and a detectable level of PML was found at day 18 after viral infection. To test the effect of Ad-PML on the growth of prostate cancer cells, the DU145 and LNCaP cells were infected with 10 and 2 MOI of Ad-PML. We found that the growth rate of the Ad-PML-infected DU145 and LNCaP cells were significantly inhibited. A tumorigenicity test in nude mice showed that the Ad-PML-treated DU145 cells failed to form tumors. Most importantly, direct injection of Ad-PML into DU145-induced tumors was able to repress tumor growth in nude mice by 64%. Taken together, these data indicate that PML is a tumor growth suppressor in prostate cancer and that Ad-PML may be a potential candidate for human prostate cancer therapy.  相似文献   

20.
Treatment of target cells with IFN induces resistance to NK cell lysis. This process is blocked by expression of E1A gene products in adenovirus (Ad)-infected and Ad-transformed cells. We compared the ability of adenovirus serotype 5 (Ad5) E1A exon 1 mutants to inhibit the induction of cytolytic resistance by IFN and block IFN-stimulated gene expression with their capacity to bind the cellular proteins p105 (retinoblastoma gene product), p107, and p300. E1A mutants that did not express conserved region 3 (CR3; residues 138-184) or contained deletions in the nonconserved regions between residues 26-35 or 86-120, bound p105, p107, and p300 and were not impaired in their capacity to block IFN-stimulated gene expression or IFN's induction of cytolytic resistance. E1A mutants with deletions in CR2 (residues 121-138) could not bind p105 or p107, but blocked IFN-stimulated gene expression and IFN's induction of cytolytic resistance. In contrast, mutants in CR1 or the N-terminal nonconserved region (residues 2, 4-25, and 48-60), which define E1A's binding site for p300, were unable to block either IFN-stimulated gene expression or IFN's induction of cytolytic resistance. We conclude that E1A's capacity to block both IFN-stimulated gene expression and IFN's induction of cytolytic resistance appears to be transduced through a pathway that involves E1A-p300 binding. The capacity of E1A to block IFN's induction of cytolytic resistance is probably secondary to E1A's more general ability to inhibit IFN-stimulated gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号