首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了氟化物玻璃中Yb^3+敏化Pr^3+、Tm^3+、Er^3+和Ho^3+产生的上转换发光,在波长为880nm光的激发下,Yb^3+敏化Pr^3+产生波长为482,520,529,605和635nm的荧光。  相似文献   

2.
上转换氟化物光纤激光器   总被引:1,自引:0,他引:1  
李毛和  胡和方 《功能材料》1997,28(4):350-355
氟化物玻璃是一种性能优异的激光基质材料。本文介绍了稀土离子上转换发光的机理和光纤顺的基本结构,综述了近几年来对掺Tm^3+、Pr^3+、Er^3+、Ho^3+和Nd^3+的上转换氟化物光纤激光器的研究和应用概况。  相似文献   

3.
加入敏化离子C_r~(3+)的RE:YAG晶体中能量转移   总被引:1,自引:0,他引:1  
测量了Cr3+和RE3+(Tm3+,Ho3+,Nd3+)共掺的YAG晶体的吸收谱、荧光谱和Cr3+的荧光衰减曲线.计算了Cr3+向RE3+能量转移的效率和速率.它是依Ho3+、Nd3+,Tm3+递增的,提出比较能量转移效率大小的简便方法.  相似文献   

4.
测量了Tm3+和Ho3+离子的吸收谱以及Cr3+离子在YAG单晶光纤中的R荧光线的寿命.用Dexter理论讨论了Cr3+离子的能量转移效率。结果表明Cr3+→Tm3+的能量转移效率比Cr3+→Ho3+的大.  相似文献   

5.
研究了用固相法制备的高密度发光材料γ-Bi2WO6:Pr3+的结构、光致发光光谱、激发谱和γ-Bi2WO6的漫反射谱.由实验测得它的晶格参数为α=5.45A,b=16.42A,c=5.43A,密度Dx=9.53g/cm3.它的光致发光光谱主发射峰位于600、608、611、629nm,分别来自于Pr3+的1D2→3H4、2Po→3H6、3Po→3H6、3Po→3F2跃迁的发射.其激发谱由位于约225~430nm范围内、最大值约在372nm的主激发带和450nm的激发峰组成;主激发带来自于基质,可能是基质的带间吸收、W-O间电荷迁移吸收和缺陷能级的吸收;450nm的激发峰来自于 Pr3+的3H4→3P2跃迁吸收.BWO:Pr3+的最佳掺杂浓度为 0.8mol%左右.  相似文献   

6.
微波快速合成硫化锶铜铋磷光体及Bi3+对Cu+的敏化发光   总被引:8,自引:0,他引:8  
本文首次采用微波辐射法快速合成了以SrS为基质,Cu、Bi^3+为共激活剂的箍余辉蓝绿色光致发光磷不体,其激发和发射主峰波长分别为267和521nm,工余辉时间约为0.5h。系统考察了在单掺杂和双掺杂情况下的发光规律,发现Bi^3+与Cu+之间存在着能量传递作用,且Bi^3+对Cu^+具有很强的敏化和猝灭效应。  相似文献   

7.
溶胶-凝胶法合成Y_3Al_5O_(12):Ce~(3 ),Tb~(3 )稀土荧光粉的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在低温下合成了 Y3Al5O12:0.08Ce3+; 0.12Tb3+稀土荧光粉.通过 X射线衍射(XRD)分析及激发、发射光谱测试结果表明:合成的粉末为YAG晶体结构,粉体 的最大激发峰为273nm,最大发射峰为545nm,色坐标为:x=0.331;y=0.558,在273nm的紫 外光激发下发出明亮的绿光.  相似文献   

8.
本文研究了共掺Er^3+/Yb^3P2O3-B2O3-Al2O3-SrO-BaO玻璃的能量转移过程。实验中制备了高掺杂Bb^3+离子的双掺Er^#+/Yb&^3+的磷酸盐玻璃样品。在Er^3+/Yb^3+掺杂比率〉1:18(mol%)时,观测到了基于Yb^3+离子至Er^3+离子能量转移下Er^3+(^3I13/2→^4I15/2)的增强发射和b^3+(^2F71/→^2F5/2)发射的减弱,当B  相似文献   

9.
不同稀土元素掺杂对钛酸钡陶瓷导电性的影响   总被引:4,自引:1,他引:3  
吴淑荣  畅柱国 《功能材料》1997,28(5):509-510
采用溶胶-凝胶法制备了14种稀土掺杂的BaTiO3超细粉体(RE=Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu),用一般陶瓷工艺将这些超细粉体分别烧成了14种稀土掺杂的BaTiO3陶瓷,测得了这些陶瓷体的电阻率并对Eu和Yb掺杂的BaTiO3陶瓷成绝缘体的原因进行了初步讨论。  相似文献   

10.
合成了组成为(Y,Zn,Sr)3(P,VO4)2:Eu3+,Bi3+的荧光材料,经射线结构分析确定为Zn3(PO4)2结构,属于单斜晶系,空间群为P21/n讨论了基质组成对Eu3+离子发光性质的影响,用Y3+取代了一部分Zn2+,用VO取代了一部分PO.由于基质的436nm发射与Eu3+的激发态能级的能量重叠,Eu3+产生较强的598nm和618nm发射.另外,掺入少量Bi3+能增强Eu3+发射.  相似文献   

11.
Tm3+/Er3+/Yb3+ tri-doped yttrium fluoride (YF3) phosphors were prepared by a facile hydrothermal method. X-ray topographic analysis found that the phosphors were crystallized products. Their sizes and morphologies were characterized by scanning electron microscopy (SEM, Hitachi S-4800), which indicated that most of the YF3 phosphors were hundreds of nanometers in size. Up-conversion (UC) spectra were recorded under 980-nm diode laser excitation at room temperature with a fluorescence spectrometer (Hitachi F-4500). Plenty of UC emissions of Tm3+ and Er3+ were observed from ultraviolet to red. For Tm3+ ions, a five-photon process (approximately 291 nm and approximately 347 nm), a four-photon process (approximately 362 nm and approximately 452 nm), and a three-photon process (approximately 475 nm) were identified in the UC spectra. The UC emissions from the Er3+ were: approximately 380 nm, approximately 408 nm, approximately 521 nm, approximately 537 nm, and approximately 652 nm. Therefore, cyan-white light can be observed by the naked eye at 980-nm excitation, even under low excitation power density. By comparing the UC spectra of the phosphors annealed at different temperatures, we found that the intensity of the UC luminescence increased as annealing temperature increased. Furthermore, the spectral dependencies on Tm3+ doped concentrations were studied. The energy transfer processes and fluorescence dynamics in the tri-doped system are currently being investigated.  相似文献   

12.
Ming C  An L  Ren X 《Applied optics》2012,51(16):3190-3193
Yb3+∕Er3+∕Tm3+ tri-doped phosphate glass ceramics were prepared by a high-temperature melting method and thermal treatment technology. Upconversion (UC) emissions of the Yb3+∕Er3+∕Tm3+ tri-doped phosphate glass ceramic samples were studied under 975 nm excitation. The glass ceramic samples can simultaneously generate blue, green, and red emissions. The multicolor emission obtained was tuned to white light by adjusting the Er3+ ion concentration. The emission color of the sample doped with 8 mol.% Er3+ ion is white to the naked eye, and CIE coordinates (x=0.316, y=0.354) of the sample are close to the standard equal energy white-light illumination (x=0.333, y=0.333). The material will be useful in developing the white-light-emitting diode.  相似文献   

13.
Zhan H  Zhou Z  He J  Lin A 《Applied optics》2012,51(15):3091-3095
By conventional melting and quenching methods, 3Yb2O3-0.2Tm2O3-xHo2O3 (wt%, x=0.2~1.2) was doped into an easily fiberized tellurite glass with composition of 78TeO2-10ZnO-12Na2O (mol%) to form YTH-TZN78 glasses. Under 976 nm excitation, the direct sensitizing effect of Yb ions (Yb→Ho) and indirect sensitizing and self-depopulating effects of Tm ions (Yb→Tm→Ho) were found to present intense red upconversion emission at 657 nm (Red, Ho:5F5→5I8) and were responsible for the absence of the usually observed 484 nm emission (Blue, Tm:1G4→3H36). Regardless of the dopant concentration of Ho ions, the intensity of the red emission at 657 nm (Red, Ho:5F5→5I8) is about three times stronger than that of the green one at 543 nm (Green, Ho:5S2→5I8). For this certain red emission at 657 nm, 0.4 wt% Ho2O3-doped YTH-TZN78 glass was found to present the highest emission intensity and is therefore determined as a promising active tellurite glass for red fiber laser development.  相似文献   

14.
We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around approximately 800 nm, emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm. The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+, Yb3+, Er3+, Ho3+, and Tm3+.  相似文献   

15.
We report on laser operation in a (6 at. % Tm, 5 at. % Yb):KLu(WO4)2 codoped crystal. The vibrational frequencies of KLu(WO4)2 are coupled to the electronic transitions of Tm3+ at 1946 nm, creating virtual final laser levels at higher energy than the ground level 3H6 of Tm3+. The longest recorded laser wavelength was 2039 nm, which is longer than permitted by a pure electronic transition in Tm3+ ions in KLu(WO4)2. We show that every laser wavelength can be explained with the electron-phonon coupling effect, where the vibration frequencies were determined through Raman spectroscopy.  相似文献   

16.
Cubic nanocrystal and hexagonal micro-rods NaYF4, with predictable size, shape and phase, have been successfully synthesized through hydrothermal reaction. The growth mechanism and the effect of mass transfer on the morphology of hexagonal micro-prism are both discussed in detail. The increase of tri-doping lanthanide ion concentration decreased the size of crystal particle, which was explained by the Arrhenius rate equation together combined with the Gibbs-Thomson relationship. Furthermore, the dopants did not only affect the sizes of tri-doped NaYF4 micro-rods, but also impacted upon fluorescence intensity. The fluorescence of tri-doped NaYF4: Nd3+/Yb3+/Er3+ system, excited by an 800 nm femtolaser, was intensified with the increase of doped lanthanide ions concentration. Nevertheless owing to the fluorescence quenching, the other two systems (NaYF4: Nd3+/Ho3+/Er3+ and NaYF4: Nd3+/Tm3+/Er3+) did not show the same phenomenon.  相似文献   

17.
Silica-coated NaYF4:Yb/Er(Tm)/Eu nanocrystals (NCs) with a mean size of 35 nm were prepared and characterized. Each of the core/shell NCs can be dispersed in ethanol and water to form stable colloidal solutions and emit bright visible light of two colors (blue and red, green and red) by up- and down-converting excitation modes. As we know, this is the first time to obtain the distinct dual-color photos of NaYF4:Yb/Er(Tm)/Eu NCs which were dispersed in deionized water. In particular, the ability to optically manipulate luminescence color of NCs doped with RE ions opens the door to multiplexed detection for high precision in more complex biotic environment.  相似文献   

18.
Radiochemistry - The interaction of synthetic skupite UO3·2.25H2O with aqueous solutions of La, Ce, Pr, Nd, Sm, Eu,Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu nitrates under hydrothermal conditions at a...  相似文献   

19.
Room temperature multicolor Upconversion (UC) luminescence in Yb3+, Tm3+, Er3+ ions doped NaGdF4 nanocrystals have been successfully synthesized by a hydrothermal method. As-prepared nanocrystals are highly crystalline and well-dispersed in cyclohexane to form stable and clear colloidal solutions, which demonstrates strong emission properties with a single laser excitation at 980 nm. The multicolor light consists of blue, green, and red UC radiations that correspond to transitions 1G4 --> 3H6 of Tm3+, 2H(11/2)/4S(3/2) --> 4I(15/2), and 4F(9/2) --> 4I(15/2) of Er3+ ions, respectively. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

20.
We report the infrared emissions of Er(3+)-Tm3+ co-doped amorphous Al2O3 thin films pumped at 791 nm by a Ti:sapphire laser. The as-deposited films were annealed to improve the photoluminescence performance. Three cross relaxation channels among Er(3+)-Tm3+ and Tm(3+)-Tm3+ ions incorporated in the films were investigated as annealing temperature increases especially from 800 to 850 degrees C. In order to understand the Stark effect and cross relaxations, the photoluminescence spectra were deconvoluted by Gaussian fittings. Our results indicate that the luminescence intensity of 1.62 microm in comparison to 1.5 microm can be enhanced by the cross relaxation process [Er3+ (4I13/2) + Tm3+ (3H6) --> Er3+ (4I15/2) + Tm3+ (3F4)], and the longer-wavelength side of Er3+ emission can be improved by the CR process [Er3+ (4I15/2) + Tm3+ (3H4) --> Er3+ (4I3/2) + Tm3+ (3F4) at expense of the Tm3+ 1.47 microm emission which is also maybe quenched by the CR effect between themselves. These results suggest one possible approach to achieve broadband infrared emissions at the wavelength region of 1.45-1.65 microm from the Er(3+)-Tm3+ co-doped systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号