首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Methane oxidation in soils with different textures and land use   总被引:5,自引:0,他引:5  
Intact core samples from soils with different textures and land use were tested for their capacity to oxidise methane. The soil cores were taken from arable land, grassland and forest. It was found that coarse textured soils (6.74–16.38 μg CH4 m-2 h-1) showed a higher methane uptake rate than fine textured soils (4.66–5.34 μg CH4 m-2 h-1). Increasing soil tortuosity was thought to reduce the methane oxidation rate in fine textured soils. The oxidation rate of forest soils (16.32–16.38 μg CH4 m-2 h-1), even with a pH below 4.5, was very pronounced and higher than arable land (11.40–14.47 μg CH4 m-2 h-1) and grassland (6.74–9.30 μg CH4 m-2 h-1). Within the same textural class arable land showed a faster methane uptake rate than grassland. In grassland with a fine texture, even methane production was observed. Nitrogen availability and turnover in these land use systems were thought to cause the different oxidation rates. Decreasing the moisture content slowed down the oxidation rate in all soils. This could be caused by an increased N turnover and a starvation of the methanotrophic bacteria. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The effect of agriculture on methane oxidation in soil   总被引:2,自引:0,他引:2  
Aerobic soils are an important sink for methane (CH4) contributing up to 15% of annual global CH4 destruction. However, the sink strength is significantly affected by land management, nitrogen (N) fertilizers and acidity. We tested these effects on samples taken from the Broadbalk Continuous Wheat, Park Grass permanent grassland and Broadbalk and Geescroft Wilderness experiments at Rothamsted. The rates of uptake from the atmosphere of both enhanced (10 ppmv) and ambient (2 ppmv) concentrations of CH4 were measured in laboratory incubations of soil cores under controlled conditions. The most rapid rates of uptake were measured in soil from deciduous woodland at pH 7 (measured in water); acidic (pH 4) woodland soil showed no net CH4 oxidation. While disturbance of the cores used in the experiments did not affect the rate of CH4 uptake, extended (150 years) cultivation of land for arable crops reduced uptake rate by 85% compared to that in the soil under calcareous woodland. The long-term application of ammonium- (NH4) based fertilizer, but not nitrate- (NO3) based fertilizer, completely inhibited CH4 uptake, but the application for the same period of farmyard manure that contained more N than the fertilizer had no inhibitory effect. Although the effects of agricultural practice on the oxidation of CH4 in soil are significant, the differences in oxidation rates between land use types are even greater. The likely effects of forest clearance, agricultural intensification and anthropogenic emissions of CH4 over the last 2500 years have been estimated for the United Kingdom. The calculations indicate that 54% of the current CH4 uptake by UK soils is the result of increased CH4 mixing ratio. They also indicate that land use change has decreased the potential sink strength by 62% or 37 kt CH4 g-1. In countries with much larger land areas than the UK, such as China, aerobic soil is likely to be a more significant factor in calculating net fluxes of CH4. It is important that the impacts of different agricultural managements and land use systems are understood and quantified so that the best possible estimate of CH4 sinks is calculated for comparison with sources. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Methane oxidation in paddy soils was investigated under laboratory conditions. Paddy soils collected before early rice transplanting could not oxidize atmospheric CH4 but could oxidize CH4 when the concentration exceeded 10 μl l-1. Initial CH4 oxidation rate increased with the increase of initial CH4 concentration. Soil with the maximum potential to produce CH4, also had the maximum CH4 oxidation activity and the maximum emission flux from paddy soil. High CH4 concentration stimulated the oxidation of CH4. After 10 days' incubation under atmosphere containing 1000 μl-1 or 104 μl l-1 CH4, the soil which could not oxidize atmospheric CH4 was able to oxidize it. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Increasing concentrations of methane (CH4) in the atmosphere are projected to account for about 25% of the net radiative forcing. Biospheric emissions of CH4 to the atmosphere total approximately 400 Tg C y-1. An estimated 300 Tg of CH4-C y-1 is oxidized in the atmosphere by hydroxyl radicals while about 40 Tg y-1 remains in the atmosphere. Approximately 40 Tg y-1 of the atmospheric burden is oxidized in aerobic soils. Research efforts during the past several years have focused on quantifying CH4 sources while relatively less effort has been directed toward quantifying and understanding the soil sink for atmospheric CH4. Recent research has demonstrated that land use change, including agricultural use of native forest and grassland systems has decreased the soil sink for atmospheric methane. Some agricultural systems consume atmospheric CH4 at rates less than 10% of those found in comparable undisturbed soils. While it has been necessary to change land use practices over the past centuries to meet the required production of food and fiber, we need to recognize and account for impacts of land use change on the biogeochemical nutrient cycles in the biosphere. Changes that have ensued in these cycles have and will impact the atmospheric concentrations of CH4 and N2O. Since CH4 and N2O production and consumption are accomplished by a variety of soil microorganisms, the influence of changing agricultural, forest, and, demographic patterns has been large. Existing management and technological practices may already exist to limit the effect of land use change and agriculture on trace gas fluxes. It is therefore important to understand how management and land use affect trace gas fluxes and to observe the effect of new technology on them. This paper describes the role of aerobic soils in the global CH4 budget and the impact of agriculture on this soil CH4 sink. Examples from field studies made across subarctic, temperate and tropical climate gradients in grasslands are used to demonstrate the influence of nutrient cycle perturbations on the soil consumption of atmospheric CH4 and in increased N2O emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
According to the revised 1996 IPCC guidelines, several emission factors are needed to calculate national inventories of N2O emissions from agriculture. To estimate the direct N2O emissions from mineral soils, an emission factor of 0.0125 kg N2O-N per kg N applied is currently being used. From recent literature data it was clearly shown that real N2O emissions could differ substantially from this value. Based on the IPCC methodology an inventory of N2O emission from agriculture in Europe (EU-15) has been made. In 1996, the N2O emission was estimated at 672 Gg N2O-N. The N2O emission per country varied between 10 and 177 Gg N2O-N. The N2O emission per ha agricultural land in the various countries varied between 1.7 and 14.2 kg N2O-N ha−1. Highest N2O emissions per ha were found in countries with a high agricultural intensity, such as the Netherlands, Belgium-Luxembourg, Denmark and Germany. Agricultural soils are a sink for atmospheric methane. An oxidation capacity of 2.5 and 1.5 kg CH4 ha−1 yr−1 was put forward for grasslands and arable land, respectively. Based on land use data of 1993, the CH4 sink of agricultural lands in EU-15 was estimated at 303.5 Gg CH4. In general, it could be concluded that N2O emissions from soils (327 Tg CO2 equivalents) are far more important than its sink function for CH4 (6.3 Tg CO2 equivalents). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The possibility that the carbon sink in agricultural soils can be enhanced has taken on great political significance since the Kyoto Protocol was finalised in December 1997. The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, forestry activities (Article 3.3) and changes in the use of agricultural soils (Article 3.4) that are shown to reduce atmospheric CO2levels may be included in the Kyoto emission reduction targets. The European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008–2012). We have shown recently that there are a number of agricultural land-management changes that show some potential to increase the carbon sink in agricultural soils and others that allow alternative forms of carbon mitigation (i.e. through fossil fuel substitution), but the options differ greatly in their potential for carbon mitigation. The changes examined were, (a) switching all animal manure use to arable land, (b) applying all sewage sludge to arable land, (c) incorporating all surplus cereal straw, (d) conversion to no-till agriculture, (e) use of surplus arable land to de-intensify 1/3 of current intensive crop production (through use of 1/3 grass/arable rotations), (f) use of surplus arable land to allow natural woodland regeneration, and (g) use of surplus arable land for bioenergy crop production. In this paper, we attempt for the first time to assess other (non-CO2) effects of these land-management changes on (a) the emission of the other important agricultural greenhouse gases, methane and nitrous oxide, and (b) other aspects of the ecology of the agroecosystems. We find that the relative importance of trace gas fluxes varies enormously among the scenarios. In some such as the sewage sludge, woodland regeneration and bioenergy production scenarios, the inclusion of trace gases makes only a small (<10%) difference to the CO2-C mitigation potential. In other cases, for example the no-till, animal manure and agricultural de-intensification scenarios, trace gases have a large impact, sometimes halving or more than doubling the CO2-C mitigation potential. The scenarios showing the greatest increase when including trace gases are those in which manure management changes significantly. In the one scenario (no-till) where the carbon mitigation potential was reduced greatly, a small increase in methane oxidation was outweighed by a sharp increase in N2O emissions. When these land-management options are combined to examine the whole agricultural land area of Europe, most of the changes in mitigation potential are small, but depending upon assumptions for the animal manure scenario, the total mitigation potential either increases by about 20% or decreases by about 10%, shifting the mitigation potential of the scenario from just above the EU's 8% Kyoto emission reduction target (98.9 Tg C y−1) to just below it. Our results suggest that (a) trace gas fluxes may change the mitigation potential of a land management option significantly and should always be considered alongside CO2-C mitigation potentials and (b) agricultural management options show considerable potential for carbon mitigation even after accounting for trace gas fluxes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Characteristics of methane oxidation in a flooded rice soil profile   总被引:3,自引:0,他引:3  
Laboratory experiments were conducted to study the variation of CH4 oxidation patterns in flooded rice soil profiles. The results indicated that surface soil presented the strongest CH4 oxidation activities as shown by the highest values of the two kinetic parameters of CH4 oxidation, Vmax and Km in the ecosystem without rice plants. Vmax and Km decreased significantly from top to bottom in the paddy rice soil profile, ranging from 12.5 to 1.2 μg h-1 g-1 and 165 to 4.1 μg g-1, respectively. In addition, we studied the effect of headspace N2, O2 and their ratio on CH4 emission and oxidation to provide information on the sensitivity of methanogens and methanotrophs to soil redox change resulted from gas transportation through arenchyma. Methane emission rate increased, however, CH4 oxidation rate decreased with a decrease of O2 concentration in the headspace. Headspace H2 increased CH4 emission rate substantially. In addition to H2 being a substrate for CH4 formation, the change of soil redox potential to a considerably low level H2 should also contribute to the increase in CH4 emission. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Experiments were conducted to investigate methane (CH4) production, oxidation, and emission from flooded rice soils. Incorporation of green manure (Sesbania rostrata) into rice fields led to a several-fold increase in CH4 emission. A stimulatory effect of organic sources on CH4 production in soil samples was noticed even under nonflooded conditions. Addition of rice straw at 1% (w/w) to nonflooded soil samples held at –1.5 MPa effected a 230-fold increase in CH4 production over that in corresponding unamended soil samples at 35 d, as compared with a threefold increase in rice straw-amended soil over that in unamended soil under flooded conditions. In a study involving two experimental field sites differing in water regimes but planted to the same rice cultivar (cv Gayatri) and fertilized with prilled urea at 60 kg N ha–1, the field plots with deep submergence of around 30 cm (site I) emitted distinctly more CH4 than did the plots with continuous water depth of 3–6 cm (site II). Likewise, in another incubation study, CH4 production in flooded soil samples increased with a progressive increase in standing water column from 5 mm to 20 mm. Application of carbamate insecticide, carbofuran, at 2 kg ai ha–1 to rice fields retarded CH4 emission through enhanced CH4 oxidation. Hexachlorocyclohexane was found to inhibit CH4 emission. The results suggest the need for extensive research efforts to develop technologies with dual objectives of environmental protection and crop productivity.  相似文献   

9.
Grassland conversion is a common practice in ley-arable cropping systems. The effects of such a disturbance on soil organic matter status and its consequences for biogeochemical cycles in terms of soil organic matter (SOM) dynamics remain poorly understood. We investigated changes occurring in soil organic carbon and nitrogen content, bulk chemical composition and in lignin as well as carbohydrate signature during 2 years after grassland conversion into arable land. Our results showed a rapid SOM decrease in the first few months after the conversion. The bulk chemical composition as seen by solid-state 13C NMR spectroscopy was similar under grassland and arable land, whereas different landuse had an impact on the contribution of plant litter compounds to SOM. SOM of arable soil had higher lignin contents and lower contents of non-cellulosic neutral carbohydrates than grassland soil. After grassland conversion, the most prominent change was an increase of the SOM’s content of non-cellulosic carbohydrate above the contents recorded for grassland or arable land. Principal component analysis indicated that SOM chemical characteristics of converted grassland even after 2 years are similar to those of initial grassland. We conclude that the chemical composition of SOM is less susceptible to rapid change and that re-installation of grassland within some years will safeguard the initial SOM status in ley-arable rotations.  相似文献   

10.
Effects of land use, moisture, temperature and substrate on production of CO2 and consumption of CH4 were measured in a series of laboratory incubation experiments on bulk soil samples from 0–10, 10–20, 20–40, 40–60, 60–80 and 80–100 cm soil depths under four dominant land uses [forest, grazing land, irrigated rice on level terraces (Khet), and upland maize–millet on sloping terraces (Bari)] of Mardi watershed (area=144 km2), Nepal. In addition, baseline physical and chemical properties of these soils were measured. The production of CO2-C day–1 per unit soil organic carbon (SOC) content in topsoil was lowest in grazing land, indicating a possibility of higher C sequestration with this land use than with other land uses. There was a decreasing trend of CO2 emission with soil depth in all land uses, as was also the case with the SOC content. The CO2 emission was increased by 90, 58, 27 and 23% for Bari, Khet, grazing and forest soil, respectively, with increase in moisture level from 40 to 60% (w/w). The CO2 release from forest soil went up from 15 to 50 g CO2 g–1 dry soil with increase in temperature from 5 to 15 °C and it further increased to 67 g CO2 g–1 at 20 °C with estimated Q 10 values of 3.4 and 1.8, respectively. Significantly higher amounts of CO2 were emitted from all the land use types upon addition of glucose to the soil, indicating high potential of microbial activity. Consumption of CH4 was more rapid in the soil from 10 to 20 cm depth for all the land use types. There was a 89% increase in CH4 consumption in forest soil with increase in moisture level from 40 to 60%, while it was decreased by 38, 73, and 40% for Khet, Bari and grazing soil, respectively. Addition of (NH4)2SO4 inhibited CH4 oxidation in soils of all land uses, indicating a negative effect of N fertiliser input on CH4 uptake in soil.  相似文献   

11.
The contribution of ploughing permanent grassland and leys to emissions of N2O and CO2 is not yet well known. In this paper, the contribution of ploughing permanent grassland and leys, including grassland renovation, to CO2 and N2O emissions and mitigation options are explored. Land use changes in the Netherlands during 1970–2020 are used as a case study. Three grassland management operations are defined: (i) conversion of permanent grassland to arable land and leys; (ii) rotations of leys with arable crops or bulbs; and (iii) grassland renovation. The Introductory Carbon Balance Model (ICBM) is modified to calculate C and N accumulation and release. Model calibration is based on ICBM parameters, soil organic N data and C to N ratios. IPCC emission factors are used to estimate N2O-emissions. The model is validated with data from the Rothamsted Park Grass experiments. Conversion of permanent grassland to arable land, a ley arable rotation of 3 years ley and 3 years arable crops, and a ley bulb rotation of 6 years ley and one year bulbs, result in calculated N2O and CO2 emissions totalling 250, 150 and 30 ton CO2-equivalents ha–1, respectively. Most of this comes from CO2. Emissions are very high directly after ploughing and decrease slowly over a period of more than 50 years. N2O emissions in 3/3 ley arable rotation and 6/1 ley bulb rotation are 2.1 and 11.0 ton CO2-equivalents ha–1 year–1, respectively. From each grassland renovation, N2O emissions amount to 1.8 to 5.5 ton CO2-equivalents ha–1. The calculated total annual emissions caused by ploughing in the Netherlands range from 0.5 to 0.65 Mton CO2-equivalents year–1. Grassland renovation in spring offers realistic opportunities to lower the N2O emissions. Developing appropriate combinations of ley, arable crops and bulbs, will reduce the need for conversion of permanent pasture. It will also decrease the rotational losses, due to a decreased proportion of leys in rotations. Also spatial policies are effective in reducing emissions of CO2 and N2O. Grassland ploughing contributes significantly to N2O and CO2 emissions. The conclusion can be drawn that total N2O emissions are underestimated, because emissions from grassland ploughing are not taken into account. Specific emission factors and the development of mitigation options are required to account for the emissions and to realise a reduction of emissions due to the changes in grassland ploughing.  相似文献   

12.
Overwinter greenhouse gas fluxes in two contrasting agricultural habitats   总被引:8,自引:1,他引:8  
Mid-day field fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) were measured during late winter/early spring in an arable field and an adjacent fallow in southern Germany. On the arable field, 2 dm high ridges, drawn as seed-beds for potato, were exposed to mild, partly diurnal freezing–thawing. Substantially elevated N2O emission rates (6–750 µg N2O-N m–2 h–1) were observed throughout the investigation period which coincided with freezing–thawing events in the surface soil (0–5 cm). Soil temperatures in the densely vegetated fallow were more isothermal due to an insulating snow/ice cover, resulting in much lower N2O emission rates (0–57 µg N2O-N m–2 h–1). CH4 uptake rates were low in both habitats during soil frost (+2 to –7.5 µg CH4-C m–2 h–1) but increased markedly in the fallow after spring thaw. Our data suggest that N2O emission peaks may occur recurrently throughout the winter when soils are subjected to diurnal surface thawing. We concluded that microclimatic conditions strongly control N2O winter loss, thus overriding ecosystem-level differences in off-season nutrient cycling. To further characterize winter-time nutrient cycling and habitat functioning in our sites, we determined NO3 and NH4 + contents, fumigation-extractable carbon (Cmic) and nitrogen (Nmic) and enumerated protozoa and nematoda throughout the investigation period. Cmic and microbial C:N ratios in the fallow were higher in winter than during the rest of the year as indicated by a 2-year study, reflecting favorable conditions for microbial C assimilation at low temperatures in the absence of freeze–thaw perturbation. In the arable soil, Cmic contents were significantly reduced during soil freezing but recovered quickly upon warming of the soil. Dynamics of Cmic in the arable soil were paralleled by protozoan biomass and transient shifts in functional composition of the nematode community, indicating that microfaunal predation played an important role in nutrient cycling after freeze–thaw perturbation. Only minor microfaunal dynamics were observed in the climatically more stable fallow, essentially confirming the absence of perturbation at this site. Our findings provide strong evidence that overwinter N2O formation is regulated by both the physical freeze–thaw susceptibility of the soil and the ecological functioning of the habitat.  相似文献   

13.
CH4 emission and oxidation in Chinese rice paddies   总被引:1,自引:0,他引:1  
In the paper, the characteristics of CH4 emission from the rice paddies, its temporary and spatial variations as well as factors regulating CH4 emission and oxidation are reviewed with an emphasis on CH4 emission from rice paddies in China. The observed four types of diel variation and two type of seasonal variation can be explained by the variations of methane production in the soil and the transport efficiencies of the three transport routs. The inter-annual variation of CH4 emission from rice fields is significant, but the process causing this change is very complicated and unclear based on the available data at present. The large special variation, more than 10 times difference, of the total season methane emissions observed in various rice fields in China, is largely attributed to soil type difference although both soil physics and chemistry are important. Rice growing activities regulate the diel and seasonal variation patterns of the methane emissions. Drainage of flooded water may significantly reduce the emission. Organic fertilizer may enhance the emission, while some of the chemical fertilizers may reduce the emission. Local climate conditions, average temperature and annual rainfall, may be responsible for part of the observed year to year differences of the total season emission. Estimates of total emissions of CH4 from Chinese rice fields, based on field measurement and model calculation, are 9.7–12.7 Tg/year and 8.17–10.52 Tg/year respectively, for the year of 1994. Oxidation of CH4 reduces the emission of CH4 produced in the soil of rice field to the atmosphere. The most likely sites for CH4 oxidation in rice fields are the water–soil interface and the rhizosphere. When the flood water dries up in irrigated fields, the oxidation of CH4 in the soil is more important and can partially explain the lower emission rates during the last period before harvest in most experiments. The magnitude of oxidation in the rhizosphere is not well known. Good correlation between methane reduction and O2 mixing ratio in the soil has been found in most soil types. Methane oxidation rate is mainly controlled by the gas transport resistance in the soil. The oxidation rate increases with the increase of temperature in the temperature range of 5–36 °C.  相似文献   

14.
In the following study N2O emissions from 3 different grasslands and from 3 different arable lands, representing major agriculture areas with different soil textures and normal agricultural practices in Belgium, have been monitored for 1 to 2 years. One undisturbed soil under deciduous forest was also included in the study. Nitrous oxide emission was measured directly in the field from vented closed chambers through photo-acoustic infrared detection. Annual N2O emissions from the arable lands ranged from 0.3 to 1.5 kg N ha−1 y−1 and represent 0.3 to 1.0% of the fertilizer N applied. Annual N2O emissions from the intensively managed grasslands and an arable land sown with grass were significantly larger than those from the cropped arable lands. Emissions ranged from 14 to 32 kg N ha−1 y−1, representing fertilizer N losses between 3 and 11%. At the forest soil a net N2O uptake of 1.3 kg N2O-N ha−1 was recorded over a 2-year period. It seems that the N2O-N loss per unit of fertilizer N applied is larger for intensively managed and heavily fertilized (up to 500 kg N ha−1) grasslands than for arable lands and is substantially larger than the 1.25% figure used for the global emission inventory. Comparison of the annual emission fluxes from the different soils also indicated that land use rather than soil properties influenced the N2O emission. Our results also show once again the importance of year-round measurements for a correct estimate of N2O losses from agricultural soils: 7 to 76% of the total annual N2O was emitted during the winter period (October–February). Disregarding the emission during the off-season period can lead to serious underestimation of the actual annual N2O flux. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
To reduce the involved uncertainties in the methane budget estimation from rice paddy fields, the methodologies of methane budget estimation have been revised mainly on the basis of measurements undertaken in the Methane Asia Campaign (MAC-98). Studies from other continuous measurements of methane emission from rice paddy fields over last few years in other Asian countries were also used. The Asian Development Bank (ADB) sponsored Methane Asia Campaign (MAC-98) in which India, China, Indonesia, Philippines, Vietnam and Thailand participated during 1998–99.The resulting CH4 measurements have shown that apart from water management, soil organic carbon also plays a significant role in determination of methane emission factors from rice paddy fields. The available data from participating countries reveal that paddy soils can be broadly classified into low soil organic carbon (<0.7%C) and high soil organic carbon (>0.7% C) classes which show average methane emission factors of 12 (5–29) and 36 (22–57) g m–2 respectively for continuously flooded (CF) fields without organic amendments compared to the IPCC–96 emission factor of 20 g m–2. Similarly for irrigated paddy fields with intermittently flooded multiple aeration (IF-MA) without organic amendments, the MAC-98 gives average emission factors of 2 (0.06–3) and 6 (0.6–24) g m–2, respectively, for low and high organic carbon soils compared to IPCC–96 emission factor of 4 (0–10) g m–2. Incorporation of soil organic carbon along with classification based on water management and organic amendments in the estimation of CH4 emissions from rice paddy fields yields more characteristic emission factors for low and high organic carbon soils and is, therefore, capable of reducing uncertainties.  相似文献   

16.
The objectives of the present study were: (1) to evaluate the predicting value of the most important European soil P tests for P leaching losses; and (2) to investigate how these soil P tests reflect the development of P depth profiles in original homogeneous soils of lysimeters. The study included more than 100 lysimeters, located at the Lysimeter Station Falkenberg/Saxony-Anhalt, UFZ-Centre for Environmental Research Leipzig-Halle GmbH, Germany. Soil textures were sand, sandy loam, loam and silt. The management forms were arable land, grassland and fallow with various variation in fertilisation, crop rotation and irrigation. Samples were collected from the A-horizons and from the whole profiles of eight set-aside and dismantled lysimeters at 10-cm sections. The concentrations of total P were determined monthly in the leachates and evaluated for a three-year period. The concentrations of P extracted by ammonium acetate lactate (AL-P), double lactate (DL-P), sodium bicarbonate (Olsen-P) and ammonium oxalate (OX-P) as well as Pt were significantly correlated with each other (P<0.05–P<0.001) for arable soils. The relevant regression coefficients were strongly influenced by soil texture, soil use and management. The mean annual P concentrations of the leachates were in the range 0.4–1.2 mg l–1 for sands and <0.001–0.1 mg l–1 for the textures sandy loam, loam and silt. These corresponded to P leaching losses of 0.001–2846 g ha–1 yr–1. Mean annual and maximum P concentrations and leaching losses were significantly (r>0.954, P<0.001) predicted by the OX-P concentrations of arable topsoils in lysimeters filled with sand. For sandy loam under grass the agronomic soil P tests (AL-P, DL-P and Olsen-P) enabled reasonable predictions of P in leachate. Under arable use, factors such as fertilisation, management intensity, depth of tillage and irrigation resulted in weak correlations between soil P concentrations and P in leachate. It was shown for the first time that all P extractants reflected P enrichments in topsoils and subsoils and the development of distinct depth profiles. Influence of soil use on the depth distribution of P was more pronounced in the 0–20 cm layer than in the subsoils. Here, the original homogeneous substrate had oscillating P concentrations at 10-cm increments under all soil uses. These could not be explained by Alox and Feox but were significantly correlated with the Ct contents and bulk density. This indicates that vertical movement of P containing organic matter along with differences in porosity contributed to the heterogeneous P distribution in the lysimeter subsoils. This new evidence must be considered if data sets from long-term lysimeter experiments are used to calibrate and validate P leaching models.  相似文献   

17.
Thirty-one rice soils from different locations in the Philippines were incubated anaerobically for 100 d to determine methane (CH4) production potentials and to establish relationships between physico-chemical properties of soil and CH4 production potential. These soils showed pronounced variations in pattern and magnitude of CH4 production. Total CH4 production over 100 d incubation ranged from 163 to 837 g CH4 g–1 soil. Total N, soil texture (clay and sand fractions mainly) and cation exchange capacity (CEC) of the soils had significant effect on CH4 production potential. Available K and active Fe content also affected the CH4 production potentials of various soils. An assessment of CH4 production with high accuracy could be obtained from soil redox potential (Eh) development during incubation; the difference between initial and equilibrium Eh allowed a computation of CH4 production with more than 70% reliability. The CH4 production potentials obtained over long incubation periods could be assessed, with reasonable accuracy, by a relatively short incubation experiments and fewer measurements of CH4 production. Only three samplings of CH4 production rate within a short incubation period of 37 d facilitated a prediction of total CH4 production over 100 d incubation using the following algorithm:P 0-100=99.21+10.79X4+11.69X16+45.79X37 (R2=0.91; P<0.01),where P 0-100 is the total CH4 production during 100 d of incubation and X n is CH4 production rate at n days of incubation. Longer incubation periods (86 d) were required to achieve a reliability of more than 95%.  相似文献   

18.
Methane (CH4) is one of the important greenhouse gases accounting for 15% of the total enhanced greenhouse effect. A laboratory experiment was conducted with nine soils from the Philippines and two soils from India to determine the CH4 production potential of topsoil and subsoil, and to assess the role of different fractions of soil organic C in influencing CH4 production potential. CH4 production potentials of topsoils varied in a wide range from 20 g g–1 soil (Urdaneta soil) to 837 g g–1 soil (Pila soil) over 100 d of incubation. In contrast, CH4 production potentials of subsoils were low (< 2 g g–1 soil over 100 d of incubation). The topsoil was the main source of CH4 in the flooded rice soils contributing 99.95% to the total CH4 production while the subsoil contributed negligibly (0.05%). CH4 production potentials of the topsoils showed significant correlation with cation exchange capacity (CEC), total N and available K contents of soils. For the subsoils, CH4 production potentials had a significant correlation with available P and clay contents of the soils. Considering the differences in all the soil properties and the CH4 production potentials between topsoils and subsoils, a significant relationship of CH4 production potential with CEC, available K and enriched C (extra C content of topsoil compared to that of subsoil) was obtained. Two carbon fractions, water soluble C (H2O-C) and carbon mineralised under anaerobic conditions (AnMC) affected total CH4 production indirectly rather than directly.  相似文献   

19.
Field measurements of CH4 emission from rice paddy field during cultivation periods were performed at all of 47 Japanese prefectures under the project of ‘Research for evaluation of CH4 and N2O emissions from agricultural land, and improvement methods of soil, water and fertilizer management’ conducted by Agricultural Production Bureau, the Ministry of Agriculture, Forestry and Fisheries. Although this project was carried out at 159 fields, the data of 132 fields were used for this report because other 27 fields had not enough data to be suitable for the statistics analyses. The measurements at rice paddy fields in various locations in Japan showed that there were large temporal variations of CH4 flux and that the fluxes differed markedly with climate, characteristics of soil and paddy, application of organic matter and mineral fertilizer, and agricultural management practices. These data mainly indicated that CH4 emission from Gley soils was greater than those from other soil types such as Andosols, Upland soils, fine-textured Lowland soils, medium and coarse-textured Lowlands soils and gravelly Lowland soils, and that water and organic matter managements influenced CH4 emission. It is suggested that midsummer drainage treatment suppressed while the application of fresh organic matter such as rice straw and wheat straw enhanced CH4 emission, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Methane (CH4) emissions from peat soils in tropical and temperate wetlands were compared. Annual CH4 emission rates in Ozegahara, the largest wetland on Honshu main island, Japan, were higher than in drained forest wetland areas examined in Indonesia. Methane emissions from the lowland paddy fields examined in Indonesia were higher than those of peaty paddy fields in Japan. There was generally a positive correlation (r2 = 0.09; P < 0.1) between CH4 emissions and CH4 production activities in wetland soils. In Ozegahara, there was a positive relationship (r2 = 0.80; P < 0.01) between CH4 production activities and soil pH, but there was no such relationship in Indonesia. The range of soil pH in Ozegahara was 5–7, while pH values in the Indonesian sites were lower than 5. There was a positive response of CH4 emission with respect to groundwater level in all of these areas. In Indonesia, land-use change from swamp and drained forest to cassava or coconut field lowered groundwater levels and decreased CH4 emission, while change to lowland paddy raised the groundwater level and increased CH4 emission. Addition of acetate generally inhibited CH4 production during the early period (until 2 weeks) of incubation, then enhanced it afterward in both Ozegahara and Indonesian wetland soils. Addition of hydrogen mostly enhanced CH4 production. From the results of this study, CH4 fluxes from peat soil to the atmosphere were positively correlated with CH4 production activities, and CH4 production activity in peat soil was regulated by soil pH, while land-use change from wetland to upland crop lowered groundwater level and thus reduced CH4 production and enhanced CH4 oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号